

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

LC-1000RU

2.4G High-Performance Transparent Wireless USB to UART Device

1 Introduction

The LC-1000RU is an upgrade of LC-1000U. The RF module for the LC-1000RU is LC-1000R instead of LC-1000.

So the LC-1000RU is an application of LC-1000R. It is composed of a LC-1000R, a controller MCU and some peripheral circuit. The controller MCU enumerates the LC-1000RU as a USB device, and realizes the transformation from USB to UART interface which is transparent to the user. So using the LC-1000RU, user can send/receive data directly through USB interface conveniently without considering the wireless transmission process. Meanwhile, two large FIFO are allocated in LC-1000RU for data transmission, in combination with LC-1000R's data flow control mechanism, the high speed and reliable data transmission can be guaranteed.

There are two applications for the LC-1000RU: One is a CDC device application and the other is a HID device application. User can download any one of them to LC-1000RU flexibly using the PC program "RF2410U Loader.exe". For the CDC device application, a VCP device implemented on windows system, user can access the LC-1000RU in the same way as access the standard serial port. And for the HID device, a HID interface device implemented, there is no driver needs on most of Windows systems. User can access the LC-1000RU just by sending the HID command packets or calling the functions of LC1000RU_HID.dll (provided by INHAOS for HID access).

2 Features

- USB 2.4G wireless data transmission device
- Full duplex transparent data transmission
- Configurable baud rate, range: 2400bps to 57600bps (Only for CDC Application)
- Frequency range: 2400-2483.5 MHz ISM
- ♦ 4 bytes RF TX/RX configurable address
- Maximum duplex RF air data rate reaches 19.2kbps

2.4G High-Performance Transparent wireless USB to UART Device

- Maximum RF air data rate reaches 57.6kbps while unidirectional transmission
- Transmission distance more than 60 meters
- Adopt C8051F321 MCU, 25MIPS, 16KB Flash, 1280B RAM
- Built-in bootloader, you can download the firmware directly via the USB
- Built-in 4 bytes UID (Unique ID) for each units

3 Typical Application

- Wireless audio transmission
- ♦ Handheld device
- Wireless monitoring and control System
- Remote controlled toys
- Short distance wireless data transmission
- ◆ 1 to N wireless data acquisition

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

4 Hardware description

The same hardware board with LC-1000U is used for LC-1000RU.

4.1 Product Demonstration

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

Figure 1 LC-1000RU Circuit Diagram

2.4G High-Performance Transparent wireless USB to UART Device

INHAOS

UM-LC-1000RU-V10-EN

5 LC-1000R Brief Introduction

LC-1000R is a 2.4G transparent low power consumption wireless UART module. It supports full duplex transparent data transmit, and the baud rate range is: 2400bps to 57600bps. Its maximum duplex RF air data rate can reach 19.2kbps, and the transmission distance more than 60 meters. Further mode, A PSM Mode is supplied by the LC-1000R, which can significantly reduce the power consumption of application system. And also a brand new Direct Mode which Support more flexible application use is supplied by the LC-1000R compared with LC-1000.

For more details about the LC-1000R, please reference the datasheet "UM-LC-1000R-V10-EN Wireless UART Module ", which can be downloaded from our website: <u>http://www.inhaos.com</u>.

6 Downloading the Application FW to LC-1000RU

A bootloader firmware already programmed into the LC-1000RU by INHAOS. And we provide two application HEX files for the LC-1000RU: LC-1000RU HID V1_6.hex and LC-1000RU CDC V2_1.hex. LC-1000RU HID V1_6.hex is a HID interface device application firmware, and LC-1000RU CDC V2_1.hex is a CDC interface device application firmware. User can reload anyone of them to LC-1000RU at will, after get any LC-1000RU device.

By default, LC-1000RU CDC V2_1.hex is pre-loaded into the devices by factory.

The steps for downloading the application firmware:

1) Open the program "RF2410U Loader.exe"

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

INHAOS www.inhaos.com Everything Done Inhouse E:\Working\LC-1000RU\Release\LC-1000RU CDC V2_1.hex Hex Length: 9454 Bytes Chksum: 6ACB ڪ 5 Latest Update: 2013-11-3 13:8:12 Serial number 🔲 Enable Auto Serial number 60000 Address (hex) 3000 Bytes 2 $-\pi$ Download SN (hex) 0000 Step Disconnected Auto Reload Clear 0 Figure 2 "RF2410U Loader" program

2) Specify the hex file path by click the

button.

4) Waiting for downloading complete.

UM-LC-1000RU-V10-EN

Figure 3 Download example for LC-1000RU CDC V2_1.hex

🔗 RF2410U Loader (Build: V1.6	.0) 📃 🗆 🖸				
Everything Done Inhouse	<u>www.inhaos.com</u>				
E:\Working\LC-1000RU\Release\LC-100	00RU HID V1_6.hex				
Hex Length: 7569 Bytes Chk Latest Update: 2013-11-3 13:13:32	isum: FOED 📂 🐬				
Serial number Enable Auto Serial number Address (hex) 3000 Bytes 2 SN (hex) 0000 Step 1	Download				
Ø Disconnected	Auto Reload Clear				
- File Name: LC-1000RU HID V1_6.hex - Length: 7569Bytes (0E0F ~ 2B9F) - Latest Update: 2013-11-3 13:13:32 14:43:49:328 > Handshake Done - Device UID = F00010 14:43:55:359 > Erase Done 14:43:55:656 > Write Flash Done 14:43:59:718 > Download Succeed					

Figure 4 Download example for LC-1000RU HID V1_6.hex

INHAOS

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

7 LC-1000RU HID Application Description

7.1 System architectures for HID Application

Figure 5 System architectures for HID Application

7.2 HID Application Command Description

7.2.1 HID Packet Format

Name	Checksum	Status	Command	SN_s	SN_r	Length	Parameter
Length	1	1	1	1	1	1	58
Value	0x00~ 0xFF						

Table 1 Packet format for HID application

Checksum

The checksum of total packet, it can be calculate by follow formula:

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

INHAOS

Checksum = NOT (Status + Command + SN_s + SN_r + Length + Parameter)

Status

The pin states of LC-1000R:

- Bit 0, RF_LINKED state
- Bit 1, RX_READY state

Bit 2, TX_READY state

- Bit 3, SET state
- Bit 4, RESET state

Bit 5, TX_FIFO_OVERRUN

Bit 6, RX_FIFO_OVERRUN

Command

Command field, for details please reference the 7.2.2.

SN_s

Serial number for the data packet

SN_r

Serial number for the next packet of transmission another side

Length

The valid data length of the packet

Parameter

The data field of the packet

7.2.2 Command List

For simplify, the following command list table only contains the relevant field, and other

fields be ignored.

Function	Command	Length	Parameter	Comment
Data Transmission	0XC0	0x00~0x3A	Maximum 58 bytes: Param 0: Data byte 0 Param 1: Data byte 1 	Specify the packet contains valid user data.

http://www.inhaos.com | INHAOS Technology Co., Ltd

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

INHAOS

			Param 57: Data byte 57	
			Total 1 byte:	Set the LC-1000RU into/exit from
Set			Param 0: Mode	configure mode. After received this
Configure	0XC1	0x01	0x01 NML Mode	command, LC-1000RU switching to
Mode			0x02 Configure Mode	the specified mode immediately.
			Param 1 ~ 57: Reserved	
			Total 1 byte:	Get the LC-1000RU's current mode
Get			Param 0: Mode	
Configure	0XC2	0x01	0x01 NML Mode	
Mode			0x02 Configure Mode	
			Param 1 ~ 57: Reserved	
			Total 1 byte:	Purge the LC-1000RU's input/output
			Param 0: Mode	buffer
Purge	0XC3	0x01	0x01 Input Buffer	
			0x02 Output Buffer	
			Param 1 ~ 57: Reserved	
				Reset the LC-1000R.
	0XCB	0x00		After reset, the LC-1000R's baud rate
Reset				is set to default 57600bps. And the
				Local address of LC-1000R reset to
				the UID bytes.
				Get the pin status of LC-1000R,
Get Pin State	0xCC	0x00		Please reference the Status in section
				7.2.1
			Param 0: LED Type	Using this command to set the LEDs
			0x01 Green LED	state
		0,700	0x02 Red LED	(This Command only for test)
Set LED	UXCD	0X02	Param 1: On Off State	
			0x00 OFF	
			0x01 ON	
				Using this command to configure the
				LC-1000R's parameters.
Configure				After received this command the After
Configure	0xCE	0x0D	Param 0~Param 12: Config Data	received this command the LC-1000U
Data				will do steps as following:
				1) Set the LC-1000R's SET pin to
				LOW

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

		2)	Write the 'Config Data' to
			LC-1000R
		3)	Waiting for the LC-1000R's
			ACK packet
		4)	Set the LC-1000R's SET pin to
			HIGH
		5)	Fill the ACK packet into 'Config
			Data', then send it back to PC

Figure 6 Command List for HID Application

7.2.3 Serial Number Control for data transmission

In order to improve the transmission reliability, a serial number control mechanism is adopted by LC-1000RU. Either reading from the LC-1000RU or writing to the LC-1000RU, the SN_r and SN_s field in the packet must comply with the serial number control mechanism. Otherwise, the data maybe duplication or discard by LC-1000RU. Figure 7 shows the details of serial number control mechanism.

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

7.3 HID Application DLL Description

For the convenience of the user, HID application supplies a common HID DLL: LC1000U_HID.dll, which designed using Visual studio C++ environment. It can be used on most windows platforms (such as Windows XP, Windows 2000 Professional, Windows NT, WIN7 and later). And it also supports vast majority of high-level languages environment which supports DLL invoke, such as VC, VB, or VS.NET.

7.3.1 DLL Interface functions

http://www.inhaos.com | INHAOS Technology Co., Ltd

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

The LC1000RU_HID.dll contains following interface functions:

LC1000U_Open

Open the LC-1000RU HID Device

Please note: LC-1000R will quit reset state (the RESET pin is set to HIGH) and then start working, since LC-1000U HID Device was opened.

LC1000U_Close

Close the LC-1000RU HID Device

Please note: LC-1000R will stop working 500ms later, after LC-1000U HID Device closed.

After LC-1000R stopped, it will keep in the reset state (The RESET pin is set to LOW).

LC1000U_IsOpen

Check whether the LC-1000RU HID Device is opened or not

• LC1000U_GetAllDevice

Search for all the HID devices on the system

LC1000U_WriteDataToDevice

Write data to device through HID interface

• LC1000U_ReceiveDataFromDevice

Read the received data in the receive buffer

LC1000U_GetBytesReceived

Get the data length received by DLL

LC1000U_SetDeviceIntoConfigMode

Set the LC-1000R to configure mode

LC1000U_SetDeviceExitFromConfigMode

Set the LC-1000R exit from configure mode

LC1000U_DiscardOutBuffer

Discard the output buffer, after this command operated, all the data in the output buffer of the DLL and the output buffer of device will be cleared.

• LC1000U_DiscardInBuffer

Discard the input buffer, after this command operated, all the data in the input buffer of the

DLL and the input buffer of device will be cleared.

◆ LC1000U_SetSleepTime

Set the sleep time of LC-1000R

◆ LC1000U_SetWakeupTime

Set the wakeup time of LC-1000R

• LC1000U_SetTXAddr

Set the TX address of LC-1000R

LC1000U_SetLocalAddr

Set the local address of LC-1000R

LC1000U_SetWorkMode

Set the work mode of LC-1000R

♦ LC1000U_SetRFPower

Set the RF power of LC-1000R

2.4G High-Perfo

rmance Transparent wireless USB to UART Device	UM-LC-1000RU-V10-EN
◆ LC1000U_SetCarrierOut	
Set the LC-1000R output the carrier wave (only for test)	
◆ LC1000U_GetSleepTime	
Get the sleep time setting of the LC-1000R	
◆ LC1000U_GetWakeupTime	
Get the wakeup time setting of the LC-1000R	
◆ LC1000U_GetTXAddr	
Get the TX address setting of the LC-1000R	
LC1000U_GetWorkMode	
Get the work mode setting of the LC-1000R	
◆ LC1000U_GetRFPower	
Get the RF Power setting of the LC-1000R	
LC1000U_GetLocalAddress	
Get the local address setting of the LC-1000R	
• LC1000U_GetIDN	
Get the IDN of the LC-1000R	
◆ LC1000U_GetVersion	
Get the version setting of the LC-1000R	
◆ LC1000U_Reset	
Reset the LC-1000R. After reset, the LC-1000R's baud rate is set to	default 57600bps. And
the Local address of LC-1000R reset to the UID bytes.	
◆ LC1000U_GetPinState	
Get the pin state of LC-1000R	
For more details please reference Appendix – HID DLL interface funct	tions
7.3.2 Using DLL Interface functions in VC	
The following steps may guide you to using the DLL interface function	ons in VC (only one

function "LC1000U_Open" loaded and invoked for an example):

Declare a function pointer type

typedef BOOL (*DLL_Open)(char *Serial);

Declare a function pointer

DLL_Open pFunc_Open;

Dynamic loading the function from the LC1000RU_HID.dll

HANDLE DIlHandle = LoadLibrary("LC1000RU_HID.dll");

pFunc_Open = (DLL_Open)GetProcAddress(DllHandle, "LC1000U_Open");

Invoke the function ◆

http://www.inhaos.com

INHAOS Technology Co., Ltd

INHAOS

INHAOS

UM-LC-1000RU-V10-EN

BOOL Open(char *Serial)				
{				
	return (*pFunc_Open)(Serial);			
}				

For more detail using process in VC, please reference our VC demo Application: LC1000RU_Debugger(HID).exe, which can be downloaded from our website: <u>http://www.inhaos.com</u>. All the common operations for the LC-1000RU are gathered in this demo by directly using the LC1000RU_HID.dll.

🛃 LC1000RU_Debug	ger(HID) ¥2.0		×		
序列号 A8 AF 09 FB	▼ Close				
 Sleep Time Work Mode RF Power Wakeup Time TX Address Local Address Save Selected to Write 	500 • PSM • 0 • 16 • 01 00 00 01 • 01 00 00 01 • Device Read	IDN: Version: Sleep Time: Work Mode: RF Power: Wakeup Time: TX Addr: Local Addr: I	LC1000R V2.0 500 1 0 16 01 00 00 01 A8 AF 09 FB		
RF Carrier	RF Carrier Other Control Command				
Power 0	Carrier Output	 Discard Input	Discard out		
		Reset	Get Pin State		

Figure 8 LC1000RU_Debugger(HID) Demo Program

7.3.3 Using DLL Interface functions in VB.NET

The following steps may guide you to using the DLL interface functions in VB.NET (only one

function "LC1000U_Open" loaded and invoked for an example):

 Declare a function pointer type 	
<pre><dllimport("lc1000ru_hid.dll")> Function LC1000U_Open _</dllimport("lc1000ru_hid.dll")></pre>	
(ByRef Serial As Byte) _	

2.4G High-Performance Transparent wireless USB to UART Device

As UInt16 End Function Invoke the function Dim NameBytes() As Byte = System.Text.Encoding.ASCII.GetBytes("10 00 00 01") If LC1000U_Open(NameBytes(0)) > 0 Then MsgBox("Open Successful!") Else MsgBox("Open Fail!") End If

For more detail using process in VB.NET, please reference our VB.NET demo Application: LC-1000RU Debugger (HID).exe, which can be downloaded from our website: <u>http://www.inhaos.com</u>. All the common operations for the LC-1000RU are gathered in this demo by directly using the LC1000RU_HID.dll.

🔜 LC-1000RU Debugger ((HID) (¥2.0)		
Device List A8 AF 09 FB Configure Send & Receive	✓ Close	:e	INHROS
Common Sottings		Results	
 ✓ Sleep Time ✓ Work Mode ✓ Work Mode ✓ RF Power ✓ Wakeup Time ✓ TX Address OO Local Address ✓ Save Selected to De 	rect v of 6E FC v evice	IDN: Version: Sleep Time: Work Mode: RF Power: Wakeup Time: TX Addr: Local Addr:	LC1000R V2.0 500 PSM 0 16 01 00 00 01 A8 AF 09 FB
Write	Read	Other Control	Commands
-RF Carrier		Config Mode	Out Config Mode In
Channel 🗸	Carrier Output	Discard Inp Reset	ut Discard Output Get Pin State

Figure 9 LC-1000RU Debugger(HID) Demo Program

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

E LC-1000RU Debugger (HID) (V2.0)	🖷 LC-1000RU Debugger(HID) (V2.0)
Device List AS AF 09 FB v Close Configure Send & Receive	Device List 10 FE 62 EB V Closen
1231231231244444444444444444445555555555	ffffffffffffffffffffffffffffffffffffff
Bytes Sent: 222 Auto Send, Interval (ns) Bytes Received: 1564 5 Claur Interval (ns) 5 Claur	Bytes Sent: 1564 Akto Send, Interval (nz) Bytes Received: 2322 5 Claw 312444444444444444444444444444444444444
	4444445555555555551231231231244444444444

7.4 Using the LC-1000RU with HID Application

7.4.1 Get the device list

Before open the device, you must get the USB serial number firstly. Certainly this step can be skipped if you already know the USB serial number of USB HID Device. According call the LC1000U_GetAllDevice() function, a device list can be returned (Please reference the 31, for details).

```
Private Sub GetDeviceList()
    Dim m_DevList(100) As Byte
    Dim m_DevString As String
    Dim m_DevSplit() As String
    'Clear the Device List
    comboDeviceList.Items.Clear()
    'Get the device list
    If LC1000U_GetAllDevice(m_DevList(0), 100) > 0 Then
         m_DevString = System.Text.Encoding.ASCII.GetChars(m_DevList)
         m_DevSplit = Split(m_DevString, ",")
         'Get each Item in the return list and insert into combo List
         For i As Integer = 0 To m_DevSplit.Length - 1
              If m_DevSplit(i).Length > 0 Then
                  comboDeviceList.Items.Add(m_DevSplit(i))
              End If
         Next
    End If
End Sub
```


UM-LC-1000RU-V10-EN

7.4.2 Open the Device

After got the specify USB serial number, the device can be open by call the function LC1000U_Open().

Private Function OpenDevice() As Boolean Dim NameBytes() As Byte = System.Text.Encoding.ASCII.GetBytes("10 00 00 01") If LC1000U_Open(NameBytes(0)) > 0 Then 'Open the device Return True Else Return False End If End Function

7.4.3 Check the state of LC-1000R

Before write data to LC-1000RU, you'd better check the state of LC-1000R. For the data will only send out by LC-1000R after it connected with another side of the transmission. Otherwise, the data wrote in stored in the output buffer and cannot be transmit. To check the state of LC-1000R, you can call the function LC1000U_GetPinState().

```
Private Function CheckConnectState() As Boolean
Dim state As Byte = LC1000U_GetPinState()
If state And &H1 Then
MsgBox("Device Connected.")
Return True
Else
MsgBox("Device Disconnected.")
Return False
End If
End Function
```

7.4.4 Configure the Device

Unlike the LC-1000U, the Configure functions can invoke directly for the LC-1000RU, no need to invoke the LC1000U_SetDeviceIntoConfigMode() and

LC1000U_SetDeviceExitFromConfigMode() two functions anymore. As in the LC-1000RU, any configure functions integered the SET pin operations (set SET pin to LOW, then write configure command, waiting for the ack, and finally set SET pin to HIGH) themselves.

Write configure data to LC-1000R example code:

Private Function WriteConfigToLC1000() As Boolean

Dim Result As Boolean = False

Dim ResultText As String = ""

Dim issave As Boolean = False

http://www.inhaos.com

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

```
'Set Sleep Time = 1000
If LC1000U_SetSleepTime(1000, issave) <= 0 Then
    MsgBox("Set Sleep Time Error!")
    Return False
End If
'Set Work Mode
If LC1000U_SetWorkMode(0, issave) <= 0 Then
    MsgBox("Set Work Mode Error!")
    Return False
End If
'Set RF Power
If LC1000U_SetRFPower(0, issave) <= 0 Then
    MsgBox("Set RF Power Error!")
    Return False
End If
'Set TX Address
Dim TXAddr(3) As Byte
                             'TX Address Length = 4
Dim strTXAddr() As String = Split("10 00 00 01", " ")
TXAddr(0) = "\&h" \& strTXAddr(3)
TXAddr(1) = "\&h" \& strTXAddr(2)
TXAddr(2) = "\&h" \& strTXAddr(1)
TXAddr(3) = "\&h" \& strTXAddr(0)
If LC1000U_SetTXAddr(TXAddr(0), issave) <= 0 Then
    MsgBox("Set TX Address Error!")
    Return False
End If
'Set Local Address
Dim LocAddr(3) As Byte
                               'Local Address Length = 4
Dim strLocAddr() As String = Split("10 00 00 02", " ")
LocAddr(0) = "&h" & strLocAddr(3)
LocAddr(1) = "&h" & strLocAddr(2)
LocAddr(2) = "&h" & strLocAddr(1)
LocAddr(3) = "&h" & strLocAddr(0)
If LC1000U_SetLocalAddr(LocAddr(0), issave) <= 0 Then
    MsgBox("Set Local Address Error!")
    Return False
End If
```

T

http://www.inhaos.com

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

```
Return True
End Function
Read configure data from LC-1000R example:
Private Function ReadConfigFromLC1000() As Boolean
    'Read IDN
    Dim IDN_Bytes(6) As Byte
                                  'IDN length = 7
    Dim strIDN As String
    If LC1000U_GetIDN(IDN_Bytes(0)) > 0 Then
        strIDN = System.Text.Encoding.ASCII.GetChars(IDN_Bytes)
    Else
        Return False
    End If
    'Read Version
    Dim Version_Bytes(1) As Byte
                                    'Version Length = 2
    Dim strVersion As String
    If LC1000U_GetVersion(Version_Bytes(0)) > 0 Then
        strVersion = "V" & Version_Bytes(0) & "." & Version_Bytes(1)
    Else
        Return False
    End If
    'Read Sleep Time
    Dim SleepTime As UInt16 = 0
    If LC1000U_GetSleepTime(SleepTime) > 0 Then
    Else
        Return False
    End If
    'Read Work Mode
    Dim WorkMode As Byte = 0
    If LC1000U_GetWorkMode(WorkMode) > 0 Then
    Else
        Return False
    End If
    'Read RF Power
    Dim RFPower As Byte = 0
    If LC1000U_GetRFPower(RFPower) > 0 Then
    Else
         Return False
```

http://www.inhaos.com

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

```
End If
```

```
'Read TX Address
Dim TXAddr(3) As Byte
                              'TX Address Length = 4
dim strTXAddr as String =""
If LC1000U_GetTXAddr(TXAddr(0)) > 0 Then
    strTXAddr = vbTab & TXAddr(3).ToString("X2") & " " & _
         TXAddr(2).ToString("X2") & " " & _
         TXAddr(1).ToString("X2") & " " & _
         TXAddr(0).ToString("X2")
Else
    Return False
End If
'Read Local Address
Dim LocAddr(3) As Byte
                               'Local Address Length = 4
Dim strLocalAddr As String
If LC1000U_GetLocalAddress(LocAddr(0)) > 0 Then
    strLocalAddr = vbTab & LocAddr(3).ToString("X2") & " " & _
         LocAddr(2).ToString("X2") & " " & _
         LocAddr(1).ToString("X2") & " " & _
         LocAddr(0).ToString("X2")
Else
    Return False
End If
Return True
```

```
End Function
```

7.4.5 Write data to the device

For writing data to the device, you just need to call the function LC1000U_WriteDataToDevice(), then the data be write into the LC-1000RU's output buffer immediately, after that the LC-1000R will transmit them to another side. If the output buffer is full or the empty buffer length is less than the request length of the function, then the request data will be discarded and the function LC1000U_WriteDataToDevice() returns a zero to indicates write operation fail.

```
Private Function SendData() As Boolean

If tb_SendTxt.Text.Length = 0 Then

Return False

End If

Dim dataSend() As Byte = System.Text.Encoding.ASCII.GetBytes(tb_SendTxt.Text)
```

```
http://www.inhaos.com | INHAOS Technology Co., Ltd
```


UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

If LC1000U_WriteDataToDevice(dataSend(0), 0, dataSend.Length) > 0 Then

```
Count_TX += dataSend.Length
Return True
End If
Return False
End Function
```

7.4.6 Read data from the device

After any data received by the LC-1000R, the LC-1000RU's controller MCU will fill the received data into the input buffer and waiting for PC to reading. And the buffer maybe overrun (oldest data will be overwrite by the new data), if PC's reading operation delay too long lead to no more buffer can contain the incoming new data. User can call the function LC1000U_GetPinState() to check the input buffer's overrun state.

```
Private Sub DataReceiveProc(ByVal txt As Object)
```

Dim strNowRecv As String = "" Dim RecvLength As Integer = 0

g_SendRecvThreadStopEvent.Reset()

While 1

If g_ExitEvent.WaitOne(0) = True Then Exit While End If

'Read the data from input buffer of the LC-1000RU

RecvLength = LC1000U_ReceiveDataFromDevice(m_RecvBuffer(0), 0,

m_RecvBuffer.Length)

If RecvLength > 0 Then

strNowRecv = System.Text.Encoding.ASCII.GetString(m_RecvBuffer, 0, RecvLength)
UpdateText_RX(strNowRecv)

End If

Threading.Thread.Sleep(50)

End While

g_SendRecvThreadStopEvent.Set()

End Sub

7.4.7 Reset the LC-1000R

In some case, user may feel confused about LC-1000R's configure setting. Then function LC1000U_Reset() can be called to reset the LC-1000R's setting. After this function called, the

```
http://www.inhaos.com | INHAOS Technology Co., Ltd
```


2.4G High-Performance Transparent wireless USB to UART Device

LC-1000R's baud rate is set to default 57600bps. And the Local address of LC-1000R reset to the UID bytes. Private Sub ResetLC1000() If LC1000U_Reset() > 0 Then MsgBox("Reset LC-1000R OK") Else MsgBox("Reset LC-1000R FAIL") End If End Sub

INHAOS

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

8 LC-1000RU CDC Application Description

8.1 System architecture for CDC Application

Figure 11 System Architecture for CDC application

8.2 CDC Application Function Description

Unlike the HID Application, user can see a serial port device in the computer's device manage, just the same as a standard serial port, when the CDC application running.

In order to improve transmission reliability, a flow control mechanism is defined by the LC-1000RU CDC Device, and some standard pins of VCP are treated as special function pins.

VCP Pin	Direction	Functions In LC-1000RU	Description
Name			
DCD	Input	No use	
RXD	Input	Receive Data	
TXD	Output	Transmit Data	
DTR	Output	Linked to LC-1000R's SET	PC software can control this pin state to set
		pin	LC-1000R into/exit configure mode.
			If DTR = 0, LC-1000R will start switch to
			configure mode
			If DTR = 1, LC-1000R will switch back to work
			mode

UM-LC-1000RU-V10-EN

Inhaos

GND	GND	GND	
DSR	Input	Linked to LC-1000R's	PC can get the LC-1000R's TX_READY pin state
		TX_READY pin	by check the DSR state.
			If DSR = 0, LC-1000R is ready for user data
			receive;
			If DTR = 1, LC-1000R is busy, user data cannot
			be received
RTS	Input	Request To Send	When the LC-1000R's output buffer almost
			full, the RTS is set to 1;
			When the LC-1000R's output buffer has
			enough data space the RTS will set back to 0
CTS	Output	Clear To Send	If the CTS = 1, the LC-1000RUwill stop data
			report progress;
			If the CTS = 0, the LC-1000RUwill report data
			to PC once received any from LC-1000R
RI	Input	No use	

Table 2 Special function of USB VCP PINs

8.3 Using the LC-1000RU with CDC Application

The method using the LC-1000RU with CDC application is much the same with accessing a serial port of PC.

8.3.1 First of all a serial port should be declared

```
Public m_DevicePort As New IO.Ports.SerialPort
```

8.3.2 Open the Device

It is very important to set the DTR to HIGH, after the device's port was opened. When the DTR = 1, the LC-1000R will go into normal work mode, otherwise, it will keep in configure mode. Please reference 8.2 for detail.

Please note: LC-1000R will quit reset state (the RESET pin is set to HIGH) and then start working, since LC-1000U CDC Device was opened.

Private Function OpenDevice(ByVal strPort As String, ByVal baudrate As Integer) As Boolean
If m_DevicePort.IsOpen = True Then 'If the port is already opened, close it
m_DevicePort.Close()
End If
m_DevicePort.PortName = strPort 'Set the port name
m_DevicePort.BaudRate = baudrate 'Set the baudrate
m_DevicePort.Open() 'Open the port

http://www.inhaos.com

INHAOS

UM-LC-1000RU-V10-EN

'Set the DTR to high (this very import step, 'for the LC-1000R go into normal work mode) m_DevicePort.DtrEnable = True

2.4G High-Performance Transparent wireless USB to UART Device

Return m_DevicePort.IsOpen

End Function

8.3.3 Configure the Device

In order to configure the LC-1000R, the following steps are suggested:

1) Set LC-1000R into configure mode, by Set the DTR to LOW

Public Function SetDeviceIntoConfigMode(Optional ByVal timeout As Integer = 1000) As Boolean

'Set DTR to LOW

m_DevicePort.DtrEnable = False

Return True

End Function

2) Write configure commands to LC-1000R, or read configuration from LC-1000R

```
'Set the LC-1000R's TX Address
```

Public Function SetTXAddr(ByVal addr As String, ByVal issave As Boolean) As Boolean

Dim str() As String = Split(addr, " ")

If str.Length < 4 Then

Return False

End If

```
Array.Clear(m_ParamBuffer, 0, m_ParamBuffer.Length)
m_ParamBuffer(0) = CByte("&H" & str(3))
m_ParamBuffer(1) = CByte("&H" & str(2))
m_ParamBuffer(2) = CByte("&H" & str(1))
m_ParamBuffer(3) = CByte("&H" & str(0))
```

```
Return WriteConfigToDevice(CMD.CMD_SET_TX_ADDR, 4, issave)End Function'Get the LC-1000R's Work modePublic Function GetWorkMode(ByRef mode As Integer) As BooleanArray.Clear(m_ParamBuffer, 0, m_ParamBuffer.Length)If WriteConfigToDevice(CMD.CMD_GET_WORK_MODE, 1, False) = True Then<br/>mode = m_ParamBuffer(0)<br/>Return TrueEnd If<br/>Return FalseEnd Function3) Exit the configure mode: by set the DTR to HIGHPublic Sub SetDeviceExitFromConfigMode()
```

```
http://www.inhaos.com
```


UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

m_DevicePort.DtrEnable = True

End Sub

8.3.4 Write data to the device

For the data wrote to the device will be received by the VCP at once, so the data writing

operation must follow principles:

- 1) The data length of write must less than the output buffer length of LC-1000RU
- 2) A delay time should be added after any write operation, and the delay time can be

calculated using the formula:

Delay time(ms) = 1000 * 10 * length / baudrate

Public Function GetTimeout(ByVal BytesCnt As Integer) As Integer

```
Dim TimeoutVal As Double
```

TimeoutVal = BytesCnt * 10000 / m_DevicePort.BaudRate

```
Return TimeoutVal
```

End Function

Public Sub WriteDataToDevice(ByRef wData() As Byte, ByVal length As Integer)

m_DevicePort.Write(wData, 0, length)

'Delay for sending DelayMillSecond(GetTimeout(length))

End Sub

8.3.5 Read data from the device

```
Public Function ReceiveDataFromDevice(ByRef rData() As Byte, ByVal maxLength As Integer) As

Integer

Dim rLen As Integer = 0

rLen = m_DevicePort.BytesToRead

If rLen > maxLength Then

rLen = maxLength

End If

rLen = m_DevicePort.Read(rData, 0, rLen)

Return rLen

End Function
```


UM-LC-1000RU-V10-EN

8.3.6 Close the Device

Please note: LC-1000R will stop working 500ms later, after LC-1000U CDC Device closed. After LC-1000R stopped, it will keep in the reset state (The RESET pin is set to LOW). Private Sub OpenDevice(ByVal strPort As String, ByVal baudrate As Integer) If m_DevicePort.IsOpen = True Then m_DevicePort.Close() End If End Sub

8.3.7 Flow control for data transmission

The flow control mechanism can make the data transmission more reliable.

Under this flow control mechanism:

- For the downstream, the CTS pin will be set to HIGH by LC-1000RU, once the output buffer almost full and be set back to LOW when it has enough data space.
- For the upstream, the LC-1000RU will report data immediately after received from LC-1000R when the CTS pin keeps LOW, but it will stop data reporting after the CTS HIGH level detected. In this case the new coming data from the LC-1000R will only store into the input buffer. And once the input buffer full, the oldest data in the input buffer will be overwrote.

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

Figure 12 Data transmission with flow control flow chart

8.3.8 The LC-1000RU CDC Debugger Software Description

A VB.NET demo program named "LC-1000RU Debugger(CDC).exe" is provided by INHAOS for example to use the LC-1000RU CDC application. The following functions are implemented by this demo:

- Open device
- Configure Operations for LC-1000R
- Set LC-1000R output RF carrier
- Binding two devices A and B, let them can transmit data each other
- Packet Mode transmission Test, under which the flow control mechanism is ignored and it does not guarantee the data reliability
- Flow control mode transmission test

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

LC-1000RU Debugger(CDC) (Build:2.0.0.0)				
Setting Packet Mode Test Flow Control Mode Test Data Log Common Settings Device A V Uart Rate 57600 Bevice A Sleep Time 8 Read V Work Mode Normal Bevice B W Warkeup Time 8 Port Name Write TX Address COM52 Read Save Selected to Device Read	Close All Ports RF Carrier Channel Power Carrier Output Binding Binding A & B			
Open Device A OK Open Device B OK Read Device A: Local Address = FA FE 00 09 Read Device B: Local Address = FA F0 00 10 Write Device A: TX Address = FA F0 00 10 Verify Device A: TX Address OK Write Device B: TX Address OK Device A exit Config Mode. Device B exit Config Mode. Device B exit Config Mode. Device B exit Config Mode.				

Figure 13 LC-1000RU Debugger(CDC) Interface

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

9 Appendix – HID DLL interface functions

♦ LC1000U_Open

Open the LC-1000RU HID Device

Please note: LC-1000R will quit reset state (the RESET pin is set to HIGH) and then start

working, since LC-1000U HID Device was opened.

Prototype:

BOOL LC1000U_Open(char *Serial);

Parameter:

Serial ---- The USB serial number string of HID device, which can be obtained according LC1000U GetAllDevice().

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_Close

Close the LC-1000RU HID Device.

Please note: LC-1000R will stop working 500ms later, after LC-1000U HID Device closed.

After LC-1000R stopped, it will keep in the reset state (The RESET pin is set to LOW).

Prototype:

BOOL LC1000U_Close();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_IsOpen

Check whether the LC-1000RU HID Device is opened or not

Prototype:

BOOL LC1000U_IsOpen();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetAllDevice

Search for all the HID devices on the system

Prototype:

int LC1000U_GetAllDevice(char *rDeviceList, int MaxLen);

Parameter:

rDeviceList ---- The receive buffer for the device USB serial number list of LC-1000RU,

the item format of the list is like: $10\ 00\ 00\ 01$, $10\ 00\ 00\ 02$, ..., $10\ 00\ 00\ 21$, and each item in the list is separated by ','.

http://www.inhaos.com

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

MaxLen --- The max length of the receive buffer

Return:

The item count in the rDeviceList

LC1000U_WriteDataToDevice

Write data to device through HID interface

Prototype:

BOOL LC1000U_WriteDataToDevice(UINT8 *wData, int Offset, int Length);

Parameter:

wData	The data buffer which will be write to device
Offset	The start position of data buffer

Length ---- The length of wData

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_ReceiveDataFromDevice

Read the received data in the receive buffer

Prototype:

int LC1000U_ReceiveDataFromDevice(UINT8 *rData, int Offset, int MaxLength);

Parameter:

The receive data buffer
The start position of receive data buffer
The max length of the rData

Return:

The data length received, that is the valid data length in rData.

LC1000U_GetBytesReceived

Get the data length received by DLL

Prototype:

int LC1000U_GetBytesReceived();

Parameter:

None

Return:

The valid data length in the receive buffer.

LC1000U_GetDeviceConfigMode

Get the device's current configure mode status

Prototype:

int CLC1000U_GetDeviceConfigMode();

Parameter:

None

Return:

The current configure mode status:

0x00 Mode switching in progress

I

0x01 NML Mode

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

0x02 Configure Mode

LC1000U_SetDeviceIntoConfigMode

Set the LC-1000R to configure mode

Prototype:

BOOL LC1000U_SetDeviceIntoConfigMode();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetDeviceExitFromConfigMode

Set the LC-1000R exit from configure mode

Prototype:

BOOL LC1000U_SetDeviceExitFromConfigMode();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_DiscardOutBuffer

Discard the output buffer, after this command operated, all the data in the output buffer of the DLL and the output buffer of device will be cleared.

Prototype:

BOOL LC1000U_DiscardOutBuffer();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_DiscardInBuffer

Discard the input buffer, after this command operated, all the data in the input buffer of the DLL and the input buffer of device will be cleared.

Prototype:

BOOL LC1000U_DiscardInBuffer();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetSleepTime

Set the sleep time of LC-1000R

Prototype:

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

BOOL LC1000U_SetSleepTime(UINT16 time, BOOL issave);

Parameter:

time ---- The time value, Value range: 20 to 65535

issave ---- 1 - save the setting to EEPROM; 0 - not save

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetWakeupTime

Set the wakeup time of LC-1000R

Prototype:

BOOL LC1000U_SetWakeupTime(UINT8 time, BOOL issave);

Parameter:

time ---- The time value, Value range: 0 to 255

issave ---- 1 - save the setting to EEPROM; 0 - not save

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetTXAddr

Set the TX address of LC-1000R

Prototype:

BOOL LC1000U_SetTXAddr(BYTE *addr, BOOL issave);

Parameter:

es
-

issave ---- 1 - save the setting to EEPROM; 0 - not save

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetLocalAddr

Set the local address of LC-1000R

Prototype:

BOOL LC1000U_SetLocalAddr(BYTE *addr, BOOL issave);

Parameter:

addr ---- The address bytes buffer, Length = 4 bytes

```
issave ---- 1 - save the setting to EEPROM; 0 - not save
```

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_SetWorkMode

Set the work mode of LC-1000R

Prototype:

BOOL LC1000U_SetWorkMode(int mode, BOOL issave);

Parameter:

http://www.inhaos.com

2.4G High-Performance Transparent wireless USB to UART Device

Operation Complete.

Set the RF power of LC-1000R

Operation Fail

LC1000U_SetRFPower

0x00 NML Mode 0x01 PSM Mode

mode

issave

Return: 1

0

Prototype:

Parameter:

power

issave

UM-LC-1000RU-V10-EN ---- The work mode of LC-1000R, ---- 1 - save the setting to EEPROM; 0 - not save BOOL LC1000U_SetRFPower(int power, BOOL issave); ---- The power level of LC-1000R, value range: 0x00 ~ 0x0F 0x00 - The maximum power output 0x0F - The minimum power output ---- 1 - save the setting to EEPROM; 0 - not save

Return:

- 1 Operation Complete.
- 0 **Operation Fail**

LC1000U_SetCarrierOut

Set the LC-1000R output the carrier wave (only for test)

Prototype:

BOOL LC1000U_SetCarrierOut(int chn, int power);

Parameter:

chn ---- The frequency channel of RF, value range: 0 ~ 83

---- The power level of LC-1000R, value range: 0x00 ~ 0x0F power

0x00 - The maximum power output

0x0F – The minimum power output

Return:

- 1 Operation Complete.
- 0 **Operation Fail**

LC1000U_GetSleepTime

Get the sleep time setting of the LC-1000R

Prototype:

BOOL LC1000U_GetSleepTime(UINT16 *time);

Parameter:

Time ---- The sleep time, Length = 1

Return:

- 1 Operation Complete.
- 0 **Operation Fail**
- LC1000U_GetWakeupTime
 - Get the wakeup time setting of the LC-1000R

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

Prototype:

BOOL LC1000U_GetWakeupTime(UINT16 *time);

Parameter:

Time ---- The wakeup time, Length = 1

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetTXAddr

Get the TX address setting of the LC-1000R

Prototype:

BOOL LC1000U_GetTXAddr(BYTE *addr);

Parameter:

Addr ---- The TX address, Length = 4

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetWorkMode

Get the work mode setting of the LC-1000R

Prototype:

BOOL LC1000U_GetWorkMode(BYTE *mode)

Parameter:

Mode --- The work mode of LC-1000R, Length = 1

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetRFPower

Get the RF Power setting of the LC-1000R

Prototype:

BOOL LC1000U_GetRFPower(BYTE *power);

Parameter:

power --- The power level of LC-1000R, Length = 1

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetLocalAddress

Get the local address setting of the LC-1000R

Prototype:

BOOL LC1000U_GetLocalAddress(BYTE *addr);

Parameter:

addr --- The local address of LC-1000R, Length = 4

Return:

1 Operation Complete.

```
http://www.inhaos.com
```


UM-LC-1000RU-V10-EN

0 Operation Fail

LC1000U_GetIDN

Get the IDN of the LC-1000R

Prototype:

BOOL LC1000U_GetIDN(BYTE *idn);

Parameter:

idn ---- IDN buffer, Length = 7

Return:

1 Operation Complete.

0 Operation Fail

LC1000U_GetVersion

Get the version setting of the LC-1000R

Prototype:

BOOL LC1000U_GetVersion(BYTE *version);

Parameter:

version --- IDN buffer, Length = 2

Return:

1 Operation Complete.

0 Operation Fail

LC1000U_Reset

Reset the LC-1000R. After reset, the LC-1000R's baud rate is set to default 57600bps. And

the Local address of LC-1000R reset to the UID bytes.

Prototype:

BOOL LC1000U_Reset();

Parameter:

None

Return:

- 1 Operation Complete.
- 0 Operation Fail

LC1000U_GetPinState

Get the pin state of LC-1000R

Prototype:

BOOL LC1000U_GetPinState(UINT8 *rPinState);

Parameter:

rPinState ---- Get the Pin State

Return:

- 1 Operation Complete.
- 0 Operation Fail

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

10 Parameters

No.	Parameter	Symbol	Unit	condition	Min	typical	Max	Note
1	Voltage Supply	VDD	V		4.75	5	5.25	
2	Current	IDD	mA	continued transmit RF carrier at 0dBm	TBD	35	TBD	Depending on mode
3	USB rate	FUSB	Mbps			12		USB2.0 full speed
4	RF output frequency	FOP	MHz		2400		2483	
5	Data rate	RFSK	bps			19.2K	38.4K	
6	RF Output power	PRF	dBm		-40		3	
7	Receive sensitivity	RXSENS	dBm	1E-3 BER sensitivity (1Mbps)		-90		
8	Receive sensitivity	RXSENS	dBm	1E-3 BER sensitivity (2Mbps)		-87		
9	Storage Temperature	STEMP	°C		-20		+80	
10	Temperature	TEMP	°C		+5		+45	

UM-LC-1000RU-V10-EN

2.4G High-Performance Transparent wireless USB to UART Device

11 Revision History

Version	Date	Author	Description
V10	2013-5-29	Tony Tan	First released

INHAOS

2.4G High-Performance Transparent wireless USB to UART Device

UM-LC-1000RU-V10-EN

Declare

Due to technical limitations and the reader's understanding , this document is for reference only. Our company makes no legal commitment or guarantee of the document. If you have any doubt, please feel free to contact our company or authorized service provider, thank you! (The source code of the example can be download form <u>www.inhaos.com.</u>See the website for more technical support

Copyright

All the devices mentioned in this document are all cited from the information of the company copyright reserved. The rights to modify and distribute belong to the company, we do not make any guarantees of the information. When in application, please confirm the information updated through the appropriate channels ,and adjust accordingly.

About Us

INHAOS is a high-tech private limited company combined with electronic products, telecommunications equipment, computer peripheral equipment development and sales. Aiming to promote domestic IT technological progress, we develop a series of embedded product development kit. This kit comes from large quantities of commercial product. The user can use it directly for design and verification, also can quickly convert the design to production and collect new product design ideas .

We also can undertake the following services:

Electronic product design Brand components acting Embedded development kit, Circuit module

Contact Us: http://www.inhaos.com/about.php?aID=7

http://www.inhaos.com | INHAOS Technology Co., Ltd