
 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 1 of 44

RF2410U USB RF Programming

RF2410U USB RF Programming

1 System hardware architecture ... 2
1.1 RF-2410U module Schematic .. 3
1.2 RF-2410M Schematic ... 3

2 System software architecture .. 4
2.1 RF-2410U Demo Firmware software architecture .. 5
2.2 RF-2410M Demo Firmware Software Architecture .. 28
2.3 USB To RF UART Demo software architecture (VB.net 2008) .. 35

3 System Performance Testing .. 39
3.1 Test environment preparation .. 39
3.2 Test methods and procedures ... 40
3.3 Software performance summary .. 43

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 2 of 44

RF2410U USB RF Programming

Introduction

RF-2410U module is an application module which integrates C8051F321 MCU chip and 2.4G wireless
chip BK2421 launched by INHAOS. C8051F321 is a high-speed MCU which aims to USB applications
compatible 8051 architecture. Its processing speed can reach 25MIPS and has a wealth of external
resources;

BK2421 is a high data transmission chip designed by BEKEN Company for the purpose of
2.4GRF application. The maximum transfer rate can reaches 2Mbps. Using RF-2410U module can
achieve USB communication and RF data transmission at the same time.

RF-2410M integrates C8051F330 and BK2421chip. Modular package can be used as target board or
welded to stick in PCB board. Users can control BK2421 chip for wireless data transmission by
programming software on C8051F330.

This sample demo achieved by directly using RF-2410U and RF-2410M as hardware platform combine
with codes. It shows how to use RF-2410U and RF-2410M source achieve data transmission from one
PC to another PC. It covers USB device application development, RF data transmission, SPI protocol,
UART data transmission and PC port USB application software, etc. Hope you can get some guidance
and

reference for USB and RF application development by this sample demo.

.

1 System hardware architecture

To form a complete circuit of

data transmission, this demo requires the following hardware and its
connection shows below:

 RF-2410U 通过 USB 端口与 PC A 连接，并采用 USB 端口直接供电；

RF-2410U connects to PC A by USB port and using USB port to directly supply power.
Due to UART interface, RF-2410M needs to connect PC B by USB to RS232 interface converter (here
using INHAOS UC-2000). Besides, RF-2410M requires a 3.3V to 7V power supply
Specifications

separately.
: RF-2410M has already integrated 3.3V LDO chip. It can directly inherit power

input range is 3.3V to 7V.

PC A

RF-2410U RF-2410M

UC-2000
USB To RS232

PC B

USB

UART

USB

RF
3.3V～7V

Power Supply

Figure 1 System Hardware Architecture Diagram

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 3 of 44

RF2410U USB RF Programming

1.1 RF-2410U

module Schematic

Figure 2 RF-2410U module hardware

circuit

1.2 RF-2410M Schematic

Figure 3 RF 2410M module hardware

circuit scheme

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Tit le

Numb er Revi si onSi ze

A4

Dat e: 2011/ 6/ 28 Sheet of
Fi le: E: \ inhaos Pr oj ect \ . . \ SCH- RF- 2410U- V01. SchDocDr awn By:

VBUS 1D- 2D+ 3GND 4

5 6

U3

PC USB

GND

C15
1uF

GND

GND

CE
CSN
SCK
MOSI
MI SO
I RQ

X1
16MHZ

C7

33nF
C16

1uF

C8
4. 7pF

C6
1. 2pF

C5
2. 2pFCE1

CSN2

SCK3

MOSI4

MI SO5

IR
Q

6

VD
D

7

VS
S

8

XC
2

9

XC
1

10

VDD_PA 11ANT1 12ANT2 13VSS 14VDD 15

IR
EF

16
VS

S
17

VD
D

18
DV

DD
19

VS
S

20

U1

BK2411 L1
6. 8nH

L3
3. 9nH

L2
8. 2nH

ANT1

C1
15pF

C2
15pF

R2
22K

C9
820nF

R3
1M

+3. 3V

+3. 3V

TP1
TP2

C17
1uF

VBUS

GND
D+
D-

C2CK
C2D

P0
.1

1
P0

.0
2

GN
D

3
D+

4
D-

5
VD

D
6

RE
GI N

7

VBUS8

/ RST/ C2CK9

P3. 0/ C2D10

P2. 311

P2. 212

P2. 113

P2. 014

P1
.7

15

P1
.6

16

P1
.5

17

P1
.4

18

P1
.3

19

P1
.2

20

P1
.1

21

P1. 0 22P0. 7 23P0. 6 24P0. 5 25P0. 4 26P0. 3 27P0. 2 28

GN
D

29

U2
C8051F321

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Tit le

Numb er Revi si onSi ze

A4

Dat e: 2011/ 6/ 28 Sheet of
Fi le: E: \ inhaos Pr oj ect \ . . \ SCH- RF2410M- V01- 20110607. SchDocDr awn By:

P0. 01

GND2

VDD3

/ RST/ C2Ck4

P2. 0/ C2D5

P1
.7

6

P1
.6

7

P1
.5

8

P1
.4

9

P1
.3

10

P1. 2 11P1. 1 12P1. 0 13P0. 7 14P0. 6 15

P0
.5

16
P0

.4
17

P0
.3

18
P0

.2
19

P0
.1

20

GND21

U3
C8051F330

VCC

C10

100nF

R4 200R

R5 330R VCC

Y1 24. 576M

R3 1M

C7
15pF

C8
15pF

GND GND

GND

VCC

C6
100nF

GND

VS
S

1

Vo
ut

2
Vi

n
3

U1
JZ6206- 3. 3V

GND C5
1uF

GND

VCC MCU_ TXD
MCU_ RXD

RF_I RQ

LED1

LED2

SCK
MI SO
MOSI

CE CE1

CSN2

SCK3

MOSI4

MI SO5

I RQ6

GND 7

VCC 8

GND 9

GND 10

RF- 24 00

U4
RF- 2400- V03

SS
RF_I RQ

GND

2C10
0. 1u

C2D
2R34
1K

RESET

2R35
1K

VCC

GND

GND GND

RESET
C2D

TP4
GND

TP5 Vcc_3. 3V

TP7
P1. 7

TP8
P1. 6 LED1 RED

LED2 GRN

R6 100R

R7 100R

CON FI G

TP12
PAI R

PAI R

C9
1uF

GND

1
2
3
4
5
6

7
8
9

10
11
12

JP1

Header 6X2A

VDD VDD
RX D RX D
TXD TXD
GND GND

RESET RESET
CON FI G CON FI G

1
2
3

4
5
6

JP2

PROG

TP13 RESET
TP14 C2D

TP15
RST

GND

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 4 of 44

RF2410U USB RF Programming

2

System software architecture

This system demo aims to build a data transmission channel between PC A and PC B. we only
use half-duplex data transmission channel here which means we can send data from PC A to PC B or
vice versa. But both ends of data transmission cannot be carried out at the same time.

RF-2410U connects to PC A by USB interface. RF-2410U will be recognized as USBXpress Device
after inserting PC A USB port. PC A can transfer data with RF-2410U directly by USB Bulk.

RF-2410U and RF-2410M transfer data by RF interface. To improve the efficiency of
transmission system, configure RF air rate of 2Mbps. (Specifications: high bandwidth rates of 2Mbps will
shorten the transmission distance between RF-2410U and RF-2410M

)

RF-2410M cannot directly connect to PC B instead of via UC-2000（USB to RS232）to transform.
After transforming,

RF-2410M and PC B transfer data by UART interface.

Due to adopting UART interface, RF-2410M needs to consider deploying baud rate. Because of the
effect of MCU processing speed, RF actual transmission efficiency and space interference, etc,
high baud rate will affect the stability of data transmission system. Here deploy baud rate of

57600bps
considering MCU processing speed and leave larger tolerance margin for RF data transmission.

To achieve

 RF-2410U： RF-2410U Demo Firmware

the purpose of visual presentation, this sample system software requires the following
element:

 RF-2410M： RF-2410M Demo Firmware
 PC A port： USB To RF UART Demo
 PC B port： UART serial debugging tools

RF-2410U Demo Firmware、RF-2410M Demo Firmware and USB To RFUART Demo are application
implementation codes for this sample; UART serial debugging tools directly use ready-made tools
like

SSCOM32.exe. The connection of the software is as follows:

 U
S
B

T
o

R
F
U
A
R
T

D
e
m
o

PC A

 R
F
-
2
4
1
0
U

D
e
m
o

F
i
r
m
w
a
r
e

RF-2410U

 R
F
-
2
4
1
0
M

D
e
m
o

F
i
r
m
w
a
r
e

RF-2410M

 S
S
C
O
M
3
2

PC B

USB RF UART

Figure 4 Software system data flow chart

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 5 of 44

RF2410U USB RF Programming

2.1 RF-2410U Demo Firmware

software architecture

2.1.1 Software features and main structure description
RF-2410U Demo Firmware finishes the following function:
 Enumerate USB CDC class device, achieve USB Bulk data transmission process
 Achieve RF data transmission, RF transmission air rate is 2Mbps
 Receive data from USB and send via RF
 Receive data from RF and send via USB

RF-2410U Demo Firmware main task is divided into System Initialize、USB Receive Process、USB
Send Process、RF Send Process and RF Receive Process, etc. System Initialize includes
C8051F320 related initial configuration (timers, ports, system clock, interrupts and other hardware
configuration) 、USB initial configuration and BK2421 chip initial configuration; USB Receive
Process and USB Send Process achieve USB data transmission process; RF Send Process and
RF Receive Process achieve RF data transmission process. And then achieve complete data
transmission process by USB and RF data transmission process.

Specifications: to improve RF data receive promptly,

RF Receive Process directly put on IRQ
Interrupt Service Routine. So RF reception process is high priority than USB.

Figure 5 RF-2410U Demo Firmware Main Routine

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 6 of 44

RF2410U USB RF Programming

2.1.2 USB CDC device implement

RF-2410U Demo Firmware’s USB device directly adopt USBXpress development kit which
provided by Silicon Labs to achieve.

2.1.2.1 USBXpress introduction
The Silicon Laboratories USBXpress® Development Kit provides a complete host and device
software solution for interfacing Silicon Laboratories C8051F32x, C8051F34x, and CP210x devices
to the Universal Serial Bus (USB). No USB protocol or host device driver expertise is required.
Instead, a simple, high-level Application Program Interface (API) for both the host software and
device firmware is used to provide complete USB connectivity.
The USBXpress Development Kit includes Windows device drivers, Windows device driver installer,
host interface function library (host API) provided in the form of a Windows Dynamic Link Library
(DLL), and device firmware interface function library.
Please visit“AN169_USBXpress_Programmers_Guide.pdf” for detail

descriptions.

Figure 6 USBXpress data flow chart

USBXpress Firmware Library provides the following USB device interface
 USB_Clock_Start() - Initializes the USB clock

functions:

 USB_Init() - Enables the USB interface
 Block_Write() - Writes a buffer of data to the host via the USB
 Block_Read() - Reads a buffer of data from the host via the USB
 Get_Interrupt_Source() - Indicates the reason for an API interrupt
 USB_Int_Enable() - Enables the API interrupts
 USB_Int_Disable() –Disables API interrupts
 USB_Disable() –Disables the USB interface
 USB_Suspend() –Suspend the USB interrupts
 USB_Get_Library_Version() –Returns the USBXpress firmware library version

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 7 of 44

RF2410U USB RF Programming

Besides, it also provides an API virtual interrupt source. The USB API interrupt (interrupt 16 for
'F320/1/6/7 devices and interrupt 17 for 'F34x devices) is a virtual interrupt generated by the
USBXpress firmware library whenever user code needs to be notified of a USBXpress event. The
events are defined in the description of the Get_Interrupt_Source function.

The USBXpress firmware library operates the MCU's USB controller at USB Full Speed, and uses
the Bulk Transfer type with a data payload of 64 bytes per packet.

2.1.2.2 USB device initialization

Before initialization, you need to define USB device’s VID、PID、Manufacturer String、
Product String and SerialNumber String. RF-2410U Demo Firmware defined as follows:
//Vendor ID
#define USB_VID 0x2156
//Product ID
#define USB_PID 0xC002

//Manufacture String defination
#define STR1LEN sizeof ("INHAOS Technology") * 2
code const unsigned char USB_MfrStr [] =
{
 STR1LEN, 0x03,
 'I', 0, 'N', 0, 'H', 0, 'A', 0, 'O', 0, 'S', 0, ' ', 0,
 'T', 0, 'e', 0, 'c', 0, 'h', 0, 'n', 0, 'o', 0, 'l', 0, 'o', 0, 'g', 0, 'y', 0,
};

//Product String defination
#define STR2LEN sizeof ("USB To RF UART Demo") * 2
code const unsigned char USB_ProductStr [] =
{
 STR2LEN, 0x03,
 'U', 0, 'S', 0, 'B', 0, ' ', 0, 'T', 0, 'o', 0, ' ', 0,
 'R', 0, 'F', 0, ' ', 0, 'U', 0, 'A', 0, 'R', 0, 'T', 0, ' ', 0,
 'D', 0, 'e', 0, 'm', 0, 'o', 0
};

//Serial number defination
unsigned char data HIDSNBuffer[] ={
 10, 3,
 '0', 0, '0', 0, '0', 0, '3', 0,
};

Call USB_Initialize()function for USB device initialization. It will automatically complete all
the listed action required by USB CDC device, you don’t have to do any actions in
Firmware. After completing calling USB_Initialize() function, host will indicates succeeded
in finding USBXpress device and indicates to install its driver. USB_Initialize() function
achieve codes are as follows:
/***
Function: void USB_Initialize(void)
Parameter:
 None
Return:
 None

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 8 of 44

RF2410U USB RF Programming

Description:
 Initialize USB
 Set USB vid,pid,manufacture strings,product strings,serial number strings
 USB power consume 100mA
 USB power supply
***/
void USB_Initialize(void)
{
 //Enables the internal oscillator,
 //initializes the clock multiplier,
 //and sets the USB clock to 48 MHz for USB full speed operation
 USB_Clock_Start();

 //Enables the USB interface,
 //the USB clock recovery feature,
 //and the use of Device Interface Functions
 USB_Init(USB_VID, USB_PID, USB_MfrStr, USB_ProductStr, HIDSNBuffer,0x32,0x80,0x0001);

 //Enables the USB API to generate interrupts
 USB_Int_Enable();
}

2.1.2.3 USB device API interrupt

To use USBXpress Firmware Library for data transmission, need to achieve USB API
interrupt service functions. In this function, you need to call Get_Interrupt_Source function
first to get the interrupt source which is current generated. And then do some relevant
handling base on the current
Get_Interrupt_Source function return back the following

interrupt source received.

 0x00 No USB API Interrupts have occurred
interrupt source information:

 0x01 USB_RESET USB Reset Interrupt has occurred
 0x02 TX_COMPLETE Transmit Complete Interrupt has occurred
 0x04 RX_COMPLETE Receive Complete Interrupt has occurred
 0x08 FIFO_PURGE Command received (and serviced) from the host to purge the

USB buffers
 0x10 DEVICE_OPEN Device Instance Opened on host side
 0x20 DEVICE_CLOSE Device Instance Closed on host side
 0x40 DEV_CONFIGURED Device has entered configured state
 0x80 DEV_SUSPEND USB suspend signaling present on bus

RF-2410U Demo Firmwar USB data transfer operations need to use DEVICE_OPEN、
DEVICE_CLOSE、TX_COMPLETE、RX_COMPLETE interrupt source. They are used to
indicate open the device, Close the device, complete transferring and receive.
Related codes are as follows:
/***
Function: void USB_API_TEST_ISR(void) interrupt 16
Parameter:
 None
Return:
 None
Description:

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 9 of 44

RF2410U USB RF Programming

 USB API interrupt service
***/
void USB_API_TEST_ISR(void) interrupt 16
{
 UINT8 INTVAL = Get_Interrupt_Source(); //Determine type of API interrupts

 if(INTVAL & USB_RESET) //Bus Reset Event
 {
 }

 if(INTVAL & DEVICE_OPEN) //Device opened on host
 {
 g_usbopen = TRUE; //Set flag to indicate usb device opened
 }

 if(INTVAL & TX_COMPLETE) //TX Complete
 {
 g_usb.sendirq = TRUE; //Set the send over irq
 }
 if(INTVAL & RX_COMPLETE) //RX Complete
 {
 g_usb.recvirq = TRUE; //Set the received complete irq
 }

 if(INTVAL & FIFO_PURGE) //Fifo purged
 {
 }

 if(INTVAL & DEVICE_CLOSE) //Device closed
 {
 g_usbopen = FALSE; //Clear the device open flag
 }
}

2.1.3 Data cache planning and management

To improve the efficiency of data transmission, RF-2410U Demo Firmware’s USB and RF data
transmission are
 The data received from USB will save in RF SEND FIFO. RF send tasks read data from the

buffer and send away.

separated. They transfer data by two FIFO buffer:

 The data received from RF will save in USB SEND FIFO . USB send tasks read data from
the buffer and send away.

C8051F321 RAM size is 2304 bytes (1K +256 +1 K USB FIFO), except 1K bytes occupied by
USB FIFO. The available RAM size which can be absolutely used is 1K+256. So RF-2410U
Demo Firmware put RF Send FIFO and USB Send FIFO into external RAM area and set the
size of 400 bytes. It occupies XRAM 800bytes in total. Internal RAM's 256 bytes and the
remaining bytes will for other use.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 10 of 44

RF2410U USB RF Programming

Both writing and reading of RF SEND FIFO and USB SEND adopt cycling mode and manage
by a unified structure. This structure involves buffer’s writing location, reading location and
buffer’s data length. The data structure is defined as follows:
/*A struct defination for USB transfer*/

typedef struct
{
 UINT16 pos_w; //write pointer for usb receive fifo
 UINT16 pos_r; //read pointer for usb receive fifo
 UINT16 length; //data length for usb receive fifo
 …
}S_USB;
/*A struct defination for RF transfer*/
typedef struct
{
 UINT16 pos_w; //write pointer for RF send fifo
 UINT16 pos_r; //read pointer for RF send fifo
 UINT16 length; //data length for RF send fifo
 …
}S_RF;

When writing data to FIFO, it will increase pos_w position and length. When

pos_w reaches the
end of FIFO, we need to set pos_w of 0 again and point to FIFO’s first position, write to the
buffer by circulating. When reading data from FIFO, it increases pos_r position but decrease
length. When pos_r reaches the end of FIFO, it sets pos_r of 0 again and point to FIFO first
position, read the buffer by circulating.

2.1.4 USB data

transmission process

2.1.4.1 USB data receive
RF-2410U Demo Firmware USB

process
data receive process mainly responsible for reading data

received from USB hardware FIFO. And then write the data to RF SEND FIFO. Please refer to
“
/***
3.1.3.1 Data cache planning and management” for RF SEND FIFO writing operation.

Function: void USB_Receive_Process(void)
Parameter:
 None
Return:
 None
Description:

USB

USB Receive

USBTransmit

 RF SEND FIFO(400B)

 USB SEND FIFO(400B)

RF TX

RF RX

RF

Figure 7 USB to UARTDemo data flow chart

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 11 of 44

RF2410U USB RF Programming

 Query usb data receive flag periodically, and read out the received data
 and fill it into RF send fifo, when usb receive flag is valid
***/
void USB_Receive_Process (void)
{
 UINT8 readlen;
 UINT8 *pPkt;

 if(g_usb.recvirq) //data received from usb
 {
 g_usb.recvirq = FALSE;
 //Read data from usb hard's receive fifo
 readlen = Block_Read((UINT8 *)g_usb_packet, PACKET_LEN_USB);

 //Copy read data to RF send fifo, use loop mode
 pPkt = g_usb_packet;
 while(readlen--)
 {
 g_rf_fifo[g_rf.pos_w++] = *pPkt++;
 if(g_rf.pos_w >= FIFO_LEN_RF)
 {
 g_rf.pos_w = 0;
 }
 g_rf.length++;
 }

 g_rf.IntervalTick = 1;
 }
}

2.1.4.2 USB data transmission

USB
process

data transmission process mainly
responsible for detecting
FIFO valid length.

USB SEND
 When the length is

greater than 0, start sending process:
read data from
fill in the current package. And then call

USB SEND FIFO and

Block_Write() function to write the packet
 to USB interface. Please refer to “
Data cache planning and management”

3.1.3.1

for RF SEND FIFO reading operation.
USB data transmission process main
workflow shows below:

 Figure 8 RF-2410U USB Send Process Flow

USB_Send_Process

Usb Send IRQ?

Current packet send busy?

Send remain bytes
of current packet

Y

Y

Data Length > 0?

Get current packet length

Fill current packet data

Subtract current packet length
from Data Length

Y

END

N

N

N

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 12 of 44

RF2410U USB RF Programming

RF-2410U Demo Firmware USB data transmission process achieved by Usb_SendToPC()
function, the codes

/***
are as follows:

Function: void USB_Send_Process(void)
Parameter:
 None
Return:
 None
Description:
 Read data from usb send fifo once it's data length <> 0, and send it to PC
 according the usb
***/
void USB_Send_Process(void)
{
 UINT16 sendlen;
 UINT8 bytessent;
 UINT8 *pPkt;

 //Check wether or not hardware operation for usb packet send is finished?
 if(!g_usb.sendirq)
 {
 return;
 }

 //packet send is in progress?
 if(g_usb.sendbusy)
 {
 //Is there data need to be send out?
 if(g_usb.bytestosend)
 {
 //write data to usb's hard fifo
 sendlen = Block_Write((UINT8 *)g_usb.sendptr, g_usb.bytestosend);

 //Calculate remain data bytes
 if(g_usb.bytestosend > sendlen)
 {
 g_usb.bytestosend -= sendlen;
 }
 else
 {
 g_usb.bytestosend = 0;
 g_usb.sendbusy = FALSE;
 }
 }
 }
 else
 {
 //usb send fifo is not empty?
 if(g_usb.length)
 {
 ENTER_CRITICAL();
 //Check whether or not the usb send fifo overflow
 //And force the read pointer equal to the write pointer when overflow occurs

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 13 of 44

RF2410U USB RF Programming

 if(g_usb.length > FIFO_LEN_USB)
 {
 g_usb.length = FIFO_LEN_USB;
 g_usb.pos_r = g_usb.pos_w;
 }
 sendlen = g_usb.length;
 EXIT_CRITICAL();

 //Limit send length: make it less than PACKET_LEN_USB, and also less than the actual
 //data length in the USB send fifo
 if(sendlen > PACKET_LEN_USB)
 {
 sendlen = PACKET_LEN_USB;
 }

 //Prepare for packet sending
 g_usb.bytestosend = sendlen;
 g_usb.sendbusy = TRUE;
 g_usb.sendptr = g_usb_packet;

 //Fill data to usb packet buffer for send from usb send fifo
 pPkt = g_usb_packet;
 bytessent = sendlen;
 while(sendlen--)
 {
 *pPkt++ = g_usb_fifo[g_usb.pos_r++];
 if(g_usb.pos_r >= FIFO_LEN_USB)
 {
 g_usb.pos_r = 0;
 }
 }

 //Subtract the buffer valid data length
 ENTER_CRITICAL();
 g_usb.length -= bytessent;
 EXIT_CRITICAL();
 }
 }
}

2.1.5 BK2421 configuration and

BK2421 is a
initialization

RF chip which highly compatible with Nordic nRF24L01. Its register’s configuration
is basically consistent with nRF24L01. The biggest difference is the former has two BANK
register (Bank0，Bank1) while nRF24L01 just has one. So BK2421 power-on initialization not
only needs to initialize Bank0, also need to initialize

Bank1.

RF-2410U Demo Firmware require the following element for BK2421 initialization


configuration
Enable RX_DR, TX_DS, MAX_RT

 Open 2-byte CRC check
interrupt

 Enable data pipe 0
 Enable auto acknowledgement data pipe 0

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 14 of 44

RF2410U USB RF Programming

 RX/TX Address field width 5 bytes
 Auto Retransmission Delay:250us
 Auto Retransmission Count: 6
 Air Data Rate:2Mbps
 Set RF output power: 5dBm
 Enable dynamic payload length data pipe 0.
 Enables Dynamic Payload Length

2.1.5.1 SPI interface operation

BK2421 only provides SPI interface for register’s writing and reading operation. So RF-2410U
Demo Firmware needs to achieve SPI’s writing and reading operation to smoothly access to
BK2421 register.

Part of RF-2410U SPI hardware circuit shows below:

Figure 9 SPI Hardware Circuit
Due to C8051F321 chip’s hardware SPI requires order for SCK\MISO\MOSI interface, just like
the figure below:

Figure 10 C8051F320 SPI Ports Config

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 15 of 44

RF2410U USB RF Programming

As you can see from Figure 9 and Figure 10, SPI configuration require the order of MISO and
MOSI is contrary with RF-2410U interface’s order. So RF-2410U module cannot use hardware
SPI, only can be achieved by software simulation SPI. The
Firstly define

codes are as follows:
SPI related

//Definations for SPI ports
pins

sbit CE = P0^2;
sbit CSN = P0^3;
sbit SCK = P0^4;
sbit MOSI = P0^5;
sbit MISO = P0^6;
Function

/***

SPI_RW_Byte() simulate SPI sequential operation by software. Realize write one byte
from SPI BUS and read one byte at the same time.

Function: UINT8 SPI_RW_Byte(UINT8 Data)
Parameter:
 Data [IN] Data byte will be write according spi bus
Return:
 Return byte from spi bus
Description:
 Write a byte to and Read a byte from spi bus
***/
UINT8 SPI_RW_Byte(UINT8 Data)
{
 UINT8 rData = 0;
 UINT8 i = 0x80;

 while(i)
 {
 MOSI = (i & Data);
 SCK = 1;
 if (MISO)
 {
 rData |= i;
 }
 SCK = 0;
 i >>= 1;
 }

 return rData;
}

2.1.5.2 BANK0 Initialize
RF-2410U Demo Firmware adopts pre-defined array (in code storage area) for BANK0 register
configuration. And then read array’s register and the corresponding value by programming
circulation. Deploy for BANK0
RF-2410U Demo Firmware Bank0 initialization configuration process is as follows:

register.

Firstly pre-define array Bank0_RegAct saved in DYNPD and FEATURE register’s value and
array Bank0_Reg_Init storage and other BANK0 register’s value.
Specifications: Before writing to DYNPD and FEATURE register, you need to activation the
register by ACTIVATE command. Otherwise writing operation will be invalid.
//Bank0_Register Configuration Operate==

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 16 of 44

RF2410U USB RF Programming

const UINT8 Bank0_RegAct[2][2] =
{
 {DYNPD, 0x01}, //Enable pipe 0, Dynamic payload length
 {FEATURE, 0x04} //EN_DPL= 1, EN_ACK_PAY = 0, EN_DYN_ACK = 0
};

code UINT8 Bank0_Reg_Init[21][2] =
{
 {CONFIG, 0x0F}, //PRX,CRC=2,ENCRC,POWRUP;
 {EN_AA, 0x01}, //data pipe 0 ACK;
 {EN_RXADDR, 0x01}, //RX address data pipe 0;
 {SETUP_AW, 0x03}, //RX/TX address width 5B
 {SETUP_RETR, 0x06}, //auto retrasmit count 6,delay 250us;
 {RF_CH, 0x60}, //2400+0x60;
 {RF_SETUP, 0x1f}, //air rate = 2Mbps,high gain,output power = 5dBm;
 {STATUS, 0x70}, //Clear interrupt flag;
 {OBSERVE_TX, 0x00},
 {CD, 0x00},
 {RX_ADDR_P2, 0xc3},
 {RX_ADDR_P3, 0xc4},
 {RX_ADDR_P4, 0xc5},
 {RX_ADDR_P5, 0xc6},
 {RX_PW_P0, 0x20}, //RX Payload Length = 32
 {RX_PW_P1, 0x20},
 {RX_PW_P2, 0x20},
 {RX_PW_P3, 0x20},
 {RX_PW_P4, 0x20},
 {RX_PW_P5, 0x20},
 {FIFO_STATUS, 0x11}
};

Then complete BANK0 initialization by calling BANK0_Init() function. The codes are as follows:
/**
Function: void BANK0_Init(void)
Parameter:
 None
Return:
 None
Description:
 BANK0 register initialize operation
***/
void BANK0_Init(void)
{
 UINT8 i = 0;
 UINT8 k = 0;
 UINT8 Rt = 0;

 //Config Bank0 Register
 for(i = 0; i < 21; i++)
 {
 SPI_Write_Reg(W_REGISTER | Bank0_Reg_Init[i][0], Bank0_Reg_Init[i][1]);
 SPI_Read_Reg(Bank0_Reg_Init[i][0]);
 }

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 17 of 44

RF2410U USB RF Programming

 //Write RX/TX Address
 RF_SET_RX_ADDR(&URX_Address[0]);
 RF_SET_TX_ADDR(&URX_Address[0]);

 //Before config DYNPD and FEATURE register, the ACTIVATE command need to be write
 k = SPI_Read_Reg(FEATURE);
 if(k == 0)
 {
 SPI_Write_Reg(ACTIVATE, 0X73);
 }

 //Now Config DYNPD and FEATURE register
 for(i = 0; i < 2; i++)
 {
 SPI_Write_Reg(W_REGISTER | Bank0_RegAct[i][0], Bank0_RegAct[i][1]);
 SPI_Read_Reg(Bank0_RegAct[i][0]);
 }
}

2.1.5.3 BANK1 Initialize
BEKEN Co. has detail description for BANK1 register except register 4、5、7、8. So you just
need to follow BEKEN Co. document to write the corresponding value for BANK1 initialization.
RF-2410U Demo Firmware BANK1 initialization process is as follows:

Firstly, pre-define Bank1_Reg0_Reg13 storage BANK1 register 0 to 13 configuration value,
Bank1_Reg14 storage BANK1 register 14 configuration value;
//Bank1 Register Configuration Operate==
code volatile UINT32 Bank1_Reg0_Reg13[] =
{
 0xE2014B40,
 0x00004BC0,
 0x028CFCD0,
 0x41390099,
 0x0B869ED9,
 0xA67F0624,
 0x00000000,
 0x00000000,
 0x00000000,
 0x00000000,
 0x00000000,
 0x00000000,
 0x00127300,
 0x36B48000,
};
code volatile UINT8 Bank1_Reg14[11] =
{
 0X41, 0X20, 0X08, 0X04, 0X81,
 0X20, 0XCF, 0XF7,0XFE, 0XFF, 0XFF
};

Then BANK1_Init() function responsible for writing pre-defined register array to the

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 18 of 44

RF2410U USB RF Programming

corresponding register, complete initialization for Bank1. The codes are as follows:
/***
Function: void BANK1_Init(void)
Parameter:
 None;
Return:
 None;
Description:
 BANK1 regiter initialize operation
***/
void BANK1_Init(void)
{
 INT8 i = 0;
 UINT8 j = 0;
 UINT8 Buff[4] = {0};
 //Configuration Bank1 Register0 to Register8====================================
 for(i = 0; i < 9; i++)
 {
 for(j = 0; j < 4; j++)
 {
 Buff[j] = (UINT8)((Bank1_Reg0_Reg13[i] >> (8 *(j))) & 0xff);
 }
 SPI_Write_Buf(W_REGISTER | i, &(Buff[0]), 4);
 }
 //Configuration Bank1 Register9 to Register13===================================
 for(i = 9; i < 14; i++)
 {
 for(j = 0; j < 4; j++)
 {
 Buff[j] = (UINT8)(Bank1_Reg0_Reg13[i] >> 8 * (3-j) & 0xff);
 }
 SPI_Write_Buf(W_REGISTER | i, &(Buff[0]), 4);
 }
 //Configuration Bank1 Register 14==
 SPI_Write_Buf(W_REGISTER | 0x0e,&(Bank1_Reg14[0]),11);
 //toggle Reg4[25-26]===
 for(i = 0; i < 4; i++)
 {
 Buff[i] = (UINT8)((Bank1_Reg0_Reg13[4] >> 8*(i)) & 0xff);
 }
 Buff[0] |= 0x06;
 SPI_Write_Buf(W_REGISTER | 0X04, &(Buff[0]), 4);

 Buff[0] &= 0XF9;
 SPI_Write_Buf(W_REGISTER | 0X04, &(Buff[0]), 4);
}

2.1.6 BK2421 PTX and PRX hardware process

We have to know hardware PTX and PRX implementation process before using BK2421 for data
transmission.
Because of highly compatible between BK2421 and Nordic RF chip, PTX and PRX implementation

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 19 of 44

RF2410U USB RF Programming

process is basically consistent with NRF24L01, so we can refer to

NRF24L01 PTX and PRX process.

As Figure 11 shows NRF24L01 PTX hardware data send process while Figure 12 shows for NRF24L01
PRX hardware data receive process. Recommend “nRF24L01 Single Chip 2.4GHz Transceiver Product
Specification”.

Figure 11 NRF24L01 PTX operations in Enhanced ShockBurst™

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 20 of 44

RF2410U USB RF Programming

Figure 12 NRF24L01 PRX operations in Enhanced ShockBurst™

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 21 of 44

RF2410U USB RF Programming

Of course there is also some difference between BK2421 and NRF24L01. Table 1 describes
their differences in data transmission, recommended “BK2401/BK2421 Application Notes
V2.0”.

No. Difference nRF24L01 BK2401/BK2421 Remark

 1
Order requirement for
CSN

CSN finish writing data and
pull up no later than the CLK
operation

After CSN writing data in low state, pull up
needs to later than CLK or at least half CLK
time and CSN rising time cannot greater than
100ns.

 2
 CE set low，RX_DR
interrupt by 0

After CE pull down, interrupt
won’t be clear

When CE pulls down, RX_DR interrupt will
atomically clear by o. So we must handle
interrupt before CE pulling down

 3
 PTX、PRX interrupt
trigger time

When PRX send consist of
PAYLOAD ACK's PRX port:
TX_DS is one packet later
than RX_DR and set 1; PTX
port: set RX_DR and TX_DS
1 at the same time.

 When PRX send consist of PAYLOAD ACK's
PRX port: set RX_DR and TX_DSTX_DS 1 at
the same time; PTX port: firstly set TX_DS 1;
RX_DR is 2-3us later than TX_DS set 1.

You need to
be careful if
ACK consists
PAYLOAD

 4
 PTX device overflow
handling for FIFO

If RX's third FIFO fully
received, the data packet
won't cover FIFO's data
instead
of triggering
RX_DR interrupt

If RX's third FIFO fully received, the data
packet won't cover FIFO's data and won't
trigger RX_DR interrupt.

You need to
be careful if
ACK consists
PAYLOAD

Table 1 BK2401/BK2421 and nRF24L01differece（only for data transmission）

2.1.7 RF data transmission process

Because RF transmission is half-duplex which is only for one-way transmission once. So

RF-2410U
Demo Firmware RF data transmission also only achieves half-duplex data transmission. RF-2410U
Demo Firmware also adopts BK2421’s hardware auto acknowledge function to ensure the reliability
of transmission.

When using auto acknowledge function, sender’s underlying hardware will automatically switch to
receive mode await the counterpart reply to ACK packet after sealing the packet and send. The
other side will automatically switch to sending mode to send an ACK packet after receiving the
packet. When the counterpart haven’t receive ACK data packet, the underlying hardware will
automatic retransmission (the times of retransmission and interval defined in SETUP_RETR
register). When retransmission reaches fixed number, indicates failed to send. (pull down IRQ and
Set MAX_RT flag). When receive the ACK data packet, indicates successfully sending.

2.1.7.1 RF packet format
RF-2410U Demo Firmware and RF-2410M Demo Firmaware RF data transmission adopt
sub-packet transmission mode. Data packet format defined as follows:

defined

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 22 of 44

RF2410U USB RF Programming

Field SN Length PKT_SN Parameter

Definition
RF send serial

number
Parameter valid

data length
RF Packet Serial

Number
Data

Length 1 Byte 1 Byte 1 Byte 0~25 Bytes
Value 0x00~0xff 0x00~0x19 0x00~0xff 0x00~0xff

Table 2 RF Data Packet Format

As the table above shows, RF data packet maximum length is 28Bytes (must be less than RF
TX/RX FIFO Length=32Bytes), Parameter length depends on actual situation select from 0 to 25
bytes. So the whole data packet actual length also includes dynamic packet length, the range is
between 3 to 28 bytes.

2.1.7.2 RF data packet send and receive process
The operation process of RF-2410U Demo Firmware sends a data packet by RF:

 Pull down CE pin
 Switch RF to send mode
 Write data to TX FIFO by W_TX_PAYLOAD command
 Pull up CE pin, duration must be greater than 10us and then pull down CE pin
 The hardware start sending data packet
 Wait for finishing sending. The underlying hardware will set corresponding interrupt

flag and pull down IRQ pin to generate interrupt after finishing sending. If successfully sent, set
STATUS_TX_DS of 1; if failed, set STATUS_MAX_RT of 1. To avoid IRQ interrupt haven’t
been generated, sometimes need to add timeout.

RF-2410U Demo Firmware sends data packet by RF through RF_SendPacket() function. The
codes are as follows:
/***
Function: void RF_SendPacket(void)
Parameter:
 None
Return:
 None
Description:
 Send out a packet via RF
 And clear the send packet length once success
***/
void RF_SendPacket(void)
{
 UINT8 sta;
 UINT8 outflag = FALSE;
 UINT16 temp = 100;

 ENTER_CRITICAL();
 g_rf.sendmode = TRUE;
 EXIT_CRITICAL();

 SwitchtoTXMode(); //Switch RF to TX mode

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 23 of 44

RF2410U USB RF Programming

 CLR_CE();
 SPI_Write_Buf(W_TX_PAYLOAD, (UINT8 *)&g_rf_packet, sizeof(S_RF_PKT)); // Writes data to TX FIFO
 g_rf.irqvalid = FALSE;
 SET_CE();
 while(temp--); //Wait for Time > 10us
 CLR_CE();

 //Wait for send over
 g_rf.sendtick = 0;
 while(1)
 {
 if(g_rf.irqvalid)
 {
 sta = SPI_Read_Reg(STATUS); // read register STATUS's value

 if(sta & STATUS_MAX_RT) //if send fail
 {
 RF_FLUSH_TX();
 outflag = TRUE;
 }
 if(sta & STATUS_TX_DS) //TX IRQ?
 {
 outflag = TRUE;
 g_rf.packetlen = 0; //Now send success, clear the send packet length
 }

 RF_CLR_IRQ(sta); // clear RX_DR or TX_DS or MAX_RT interrupt flag
 g_rf.irqvalid = FALSE;

 if(outflag)
 {
 break;
 }
 }
 else if(g_rf.sendtick >= 2) //if timeout
 {
 RF_FLUSH_TX();
 break;
 }
 }

 SwitchtoRXMode(); //Switch to RX mode

 ENTER_CRITICAL();
 g_rf.sendmode = FALSE;
 EXIT_CRITICAL();
}

The operation process of RF-2410U Demo Firmware receives a data packet:
 Switch RF to receive mode, the underlying
 When the underlying hardware receive the packet,

hardware start detecting data
set RX_DR flag and pull down IRQ

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 24 of 44

RF2410U USB RF Programming

pin to generate interrupt
 When detect IRQ interrupt, application program read STATUS register and

judge

 Completing reading, clear STATUS RX_DR bit by 0, hardware will pull up IRQ pin
automatically

RX_DR is 1 or not. If 1, read RX FIFO’s receive packet by R_RX_PAYLOAD
command.

Please refer to “2.1.7.4RF data receive process” for RF-2410U Demo Firmware RF data receive
process codes.

2.1.7.3 RF data send process
RF-2410U Demo Firmware RF data send process responsible for sending data which receive from
USB and save in RF SEND FIFO to RF-2410M. Send process shows below:

When RF SEND FIFO data’s valid length greater than or equal to Packet Length, or send interval is
more than 3ms, read one packet from

RF SEND FIFO（if less than one packet, use actual length）,
then send data. If failed, re-send data until successful. The flow shows below:

Figure 13 RF-2410U RF Send Process Flow

RF Send Process

Current packet send ok?

Update SN

Send current packet

Read a new packet from FIFO

Reset send interval time control

END

N

Data Length >= Packet length or
send interval >= 4

Y

Y

N

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 25 of 44

RF2410U USB RF Programming

RF-2410U Demo Firmware achieve send process above by RF_Send_Process() function. The
sample codes are as follows:

/***
Function: void RF_Send_Process(void)
Parameter:
 None
Return:
 None
Description:
 Firstly, check the valid data length of RF SEND FIFO;
 Secondly, read data from RF SEND FIFO and fill into the RF send packet;
 Thirdly, send out the RF packet with retransmit till success.
***/
void RF_Send_Process(void)
{
 if(g_rf.packetlen) //Last packet sendover ?
 {
 //Resend last packet and update the send sn
 g_rf_packet.sn = g_rf.sn_rf++;

 RF_SendPacket();
 }
 else if(g_rf.length >= RF_PKT_LEN || g_rf.IntervalTick >= 4)
 {
 //Fill a new packet data
 RF_FillPacket();

 RF_SendPacket();

 //Check wether rf send fifo has data
 if(g_rf.length)
 {
 //keep time control on
 g_rf.IntervalTick = 1;
 }
 else
 {
 //close time control
 g_rf.IntervalTick = 0;
 }
 }
}

2.1.7.4 RF data receive process
RF-2410U Demo Firmware RF data receive process responsible for detecting hardware IRQ
interrupt. When interrupt happens, read the status of RF STATUS register. If the register status
RX_DR indicates 1, read data from RX FIFO. Then write the data read to USB SEND FIFO buffer.
The flow is as follows:

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 26 of 44

RF2410U USB RF Programming

Figure 14 RF-2410U RF Receive Process Flow
RF-2410U Demo Firmware RF data receive process achieve by RF_Recv_Process() function. The
sample codes are as follows:

/***
Function: void RF_Recv_Process(void)
Parameter:
 None
Return:
 None
Description:
 Read rf receive data out of the RF fifo, once the IRQ valid
 then fill it to usb send fifo
***/
void RF_Recv_Process(void)
{
 UINT8 sta;
 UINT8 rlen;
 UINT8 *pPkt;

 if(g_rf.irqvalid)

RF Receive Process

IRQ Valid ?

Read RF STATUS

RX_DR = 1?

Read data packet from RX FIFO

Write data packet to USB SEND FIFO

Clear IRQ Status

END

Y

Y

N

N

IRQ Valid = FALSE

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 27 of 44

RF2410U USB RF Programming

 {
 g_rf.irqvalid = FALSE;

 sta = RF_GET_STATUS(); //Get the RF status

 if(sta & STATUS_RX_DR) //Receive OK?
 {
 //Readout the received data from RX FIFO
 rlen = RF_ReadRxPayload((UINT8 *)&g_rf_packet, sizeof(S_RF_PKT));
 RF_FLUSH_RX();

 //Is a resend packet?
 if(g_rf_packet.sn_pkt != g_rf.sn_recv)
 {
 //records the packet sn
 g_rf.sn_recv = g_rf_packet.sn_pkt;

 //Limit the data length of received packet
 rlen = g_rf_packet.len;
 if(rlen > RF_PKT_LEN)
 {
 rlen = RF_PKT_LEN;
 }

 //fill the data of received packet to usb send fifo
 pPkt = (UINT8 *)g_rf_packet.param;
 while(rlen--)
 {
 g_usb_fifo[g_usb.pos_w++] = *pPkt++;
 if(g_usb.pos_w >= FIFO_LEN_USB)
 {
 g_usb.pos_w = 0;
 }
 g_usb.length++;
 }
 }
 }
 if(sta & STATUS_MAX_RT) //Send fail?
 {
 RF_FLUSH_TX(); //Flush the TX FIFO
 }

 RF_CLR_IRQ(sta); //Clear the IRQ flag
 }
}

Specifications: To improve RF-2410U Demo Firmware RF’s receiving efficiency, we specifically put
RF_Recv_Process() function call to IRQ interrupt service program. Please refer to “Figure 5
RF-2410U Demo Firmware Main Routine” for detail information.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 28 of 44

RF2410U USB RF Programming

2.2 RF-2410M Demo Firmware

Software Architecture

2.2.1 Software features and main structure description
RF-2410M Demo Firmware finishes the following functions:

 Receive data from PC B by UART interface and save in RF FIFO
 Send data from UART FIFO to PC B by UART interface
 Receive data from RF-2410U by RF and save in UART FIFO
 Send data from RF FIFO to RF-2410U by RF

The main task routine of RF-2410M Demo Firmware divides to System Initialize, RF Receive
Process, RF Send Process, UART Receive Process UART Send Process, etc. System Initialize
includes C8051F330 initialization related configuration (port、system clock、timer、UART、SPI and
interrupt hardware configuration) and BK2421 chip initialization configuration. RF Receive Process
and RF Send Process achieve RF data transmission process; UART Receive Process and UART
Send Process achieve UART data transmission process. Due to UART transmission timely require,
we specifically put UART Receive Process and UART Send Process on UART interrupt service
function.

Figure 15 RF-2410M Demo Firmware Main Routine

2.2.2 BK2421 configuration and initialization
Please refer to RF-2410U Demo Firmware “BK2421 configuration and initialization” for RF-2410M
Demo Firmware’s BK2421 chip configuration and initialization

2.2.3 RF data transmission process
RF-2410M Demo Firmware’s RF data transmission mechanism is the same as

RF-2410U Demo
Firmware. As for RF data packet format definition, please refer to RF-2410U Demo Firmware’s “RF
packet format definition”. As for description of RF data packet sending and receiving process,
please refer to RF-2410U Demo Firmware’s “RF data packet sending and receiving process”.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 29 of 44

RF2410U USB RF Programming

2.2.3.1 RF data send process
RF data send process constantly scanning and detecting RF FIFO’s valid length. When meet any of
the following conditions, send data:

 Valid length reaches a packet data length of RF
 Valid length is greater than o and send interval is more than 3ms

When sending data, MCU firstly need to read one packet data from RF FIFO and fill to the current
sending data packet. Then call data packet sending function to send current packet. Read data from
RF FIFO adopts circulating approach (Please refer to data cache planning and management).
Because we need to perform on RF FIFO both in UART interrupt or RF send process, RF send
process adopts the following mechanism for reading RF FIFO:

A. Close interrupt, read and count the current
 packet’s length, then open the interrupt

B. Read data from RF FIFO to the current packet
C. Close interrupt, cut the read length from RF

FIFO’s current length, and then open the interrupt.
RF data send process shows below:

 Figure 16 RF-2410M RF Send Process Flow

RF Send Process

Send current packet

Reset send interval

END

Data Length >= Packet length or
send interval >= 3

Y

N

EA = 0

Get Current Packet Length

EA = 1

Read Current Packet From RF FIFO

EA = 0

Subtract Current Packet Length from
RF FIFO Length

EA = 0

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 30 of 44

RF2410U USB RF Programming

RF-2410M Demo firmware’s RF data send process reached by RF_SendProcess()function. The
codes are as follows:

/**
Function: void RF_SendProcess(void)
Parameter:
 None
Return:
 None
Description:
 Check the RF FIFO and send out a packet according RF if
 there is any valid data exist
**/
void RF_SendProcess(void)
{
 UINT8 Len = 0;

 //RF FIFO Length reach the RF_PKT_LEN or send interval timeout?
 if(((g_RF.RcLen >= RF_PKT_LEN) || (RF.snblankcnt >= 3)))
 {
 CLR_EA(); //Disable Interrupt
 RF.R_Usalvewpos = g_RF.wpos; //Save RF FIFO write position
 if(g_RF.RcLen > RFRCLEN) //Limit the RF FIFO total length
 {
 g_RF.RcLen = RFRCLEN;
 g_RF.rpos = RF.R_Usalvewpos;
 }
 RF.U_Rsalvelen = g_RF.RcLen; //Save the RF FIFO length
 SET_EA(); //Reenable interrupt again

 //Copy data from RF FIFO and fill into RF send packet
 Len = CopyDataFromRFFIFO(&g_RFRcBuff);

 CLR_EA(); //Disable interrupt
 g_RF.RcLen -= g_RFSenData.Len; //Subtract the read length from RF FIFO total length
 SET_EA(); //Enable interrupt

 RF_SendData((UINT8 *)&g_RFSenData , Len); //Send out current packet
 RF.snblankcnt = 0; //Clear send interval
 }
}

/**
Function: UINT8 CopyDataFromRFFIFO(UINT8 *pR)
Parameter:
 *pR [IN] UART receive buffer
Return:
 None
Description:
 copy data from RF FIFO to RF send packet
***/
UINT8 CopyDataFromRFFIFO(UINT8 *pR)
{

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 31 of 44

RF2410U USB RF Programming

 UINT8 i = 0;
 UINT8 Length;

 Length = RF.U_Rsalvelen; //Get the current packet length
 if(Length > RF_PKT_LEN) //Limit to RF_PKT_LEN
 {
 Length = RF_PKT_LEN;
 }

 for(i = 0; i < Length ; i++) //Copy data now, and forward move the read position
 {
 g_RFSenData.Param[i] = pR[g_RF.rpos++];
 if(g_RF.rpos >= RFRCLEN) //Once the read position reach the end
 { //reset it to start position
 g_RF.rpos = 0;
 }
 }

 //Fill the other parts of the packet
 g_RFSenData.sn = RF.sn;
 g_RFSenData.sn_pkt = RF.sn_pkt;
 g_RFSenData.Len = Length;
 RF.sn++;
 RF.sn_pkt++;

 return (Length + 3);
}

2.2.3.2 RF data receive process
RF data receive process responsible for constantly scanning and detecting IRQ’s interrupt flag.
When IRQ’s interrupt flag is 1, read RX FIFO data and clear the flag. If the data length read is not o,
write the data to UART FIFO and enforce to start UART sending process. Detailed RF data receive
process shows below:

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 32 of 44

RF2410U USB RF Programming

Figure 17 RF-2410M RF Receive Process Flow

RF-2410M Demo firmware RF_ReceiveProcess() function achieve RF data transmission process.
The codes are as follows:

/**
Function: void RF_ReceiveProcess(void)
Parameter:
 None
Return:
 None
Description:
 Check the IRQ periodically
 Read out the received packet from RF RX FIFO
 Write the received packet to UART FIFO
***/

RF Receive Process

IRQ Valid ?

Read RF STATUS

RX_DR = 1?

Read data packet from RX FIFO

Clear IRQ Status

END

Y

Y

N

N

Write data packet to UART FIFO

Set Read Valid

Read Valid?

Y

Start the UART Send process

IRQ Valid = FALSE

N

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 33 of 44

RF2410U USB RF Programming

void RF_ReceiveProcess(void)
{
 UINT8 Rt = 0;
 UINT8 Len = 0;
 UINT8 temp = 0;
 UINT8 isValid = FALSE;

 if(RF.IRQValid)
 {
 RF.IRQValid = FALSE;
 Rt = SPI_Read_Reg(R_REGISTER | STATUS); //Read RF IRQ status;
 if(Rt & STATUS_RX_DR) //RX_DR is set?
 {
 //Read out the received packet from RF RX FIFO
 Len = Read_RXPayload((UINT8 *)&g_RFRecvData ,sizeof(RFDATAPKT));
 FLUSH_LED2();

 isValid = TRUE;
 }

 //Add a clear MAX_RT error operation here
 if(Rt & STATUS_MAX_RT)
 {
 SPI_Write_Reg(FLUSH_TX, 0X00);
 }

 SPI_Write_Reg(FLUSH_RX, 0X00); //Flush RX FIFO
 SPI_Write_Reg(W_REGISTER | STATUS, Rt); //Clear IRQ

 if(isValid)
 {
 CopyToUARTFifo(&g_RFRecvData , Len); //Copy to UART FIFO

 CLR_EA(); //Disable interrupt
 g_uart.SnLen += RF.R_Usalvelen; //Add the received packet length to UART FIFO
length
 if(g_uart.SnLen > UARTSNLEN) //Limit the UART FIFO length to UARTSNLEN
 {
 g_uart.SnLen = UARTSNLEN;
 g_uart.rpos = g_uart.wpos;
 }
 SET_EA(); //Enable interrupt
 }

 if(!g_uart.SendInProgress) //Is UART send process stoped?
 {
 TI0 = 1; //Force the UART send process to start
 g_uart.SendInProgress = TRUE;
 }
 }
}

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 34 of 44

RF2410U USB RF Programming

/**
Function: void CopyToUARTFifo(UINT8 *pRecv, UINT8 Length)
Parameter:
 *pRecv [IN] RF received buffer
 Length [IN] RF received length
Return:
 None
Description:
 Copy a packet data to UART FIFO
***/
void CopyToUARTFifo(RFDATAPKT *pRecv , UINT8 Length)
{
 UINT8 i = 0;
 Length = pRecv->Len; //Get the copy length

 for(i = 0; i < Length; i++)
 {
 //Copy a byte and move write position forward
 g_UARTSnBuff[g_uart.wpos++] = pRecv->Param[i];
 if(g_uart.wpos >= UARTSNLEN) //Once the write position reach the end of FIFO
 { //Reset it to the start
 g_uart.wpos = 0;
 }
 }

 RF.R_Usalvelen = Length;
}

2.2.4 UART data transmission process

UART data transmission processes completely finished by UART interrupt routing. Please refer to
“Figure 1 RF-2410M Demo Firmware main task flow

”for its circuit.

UART_ISR() function is the procedure for UART interrupt service. It includes UART data receive
process and UART data send process. The codes are as follows:
/***
Function: void UART_ISR(void)interrupt 4
Parameter:
 None
Return:
 None
Description:
 UART interrupt process operation
**/
void UART_ISR(void) interrupt 4
{
 if(RI0) //Is Received a byte
 {
 RI0 = 0; //Clear RI0
 g_RFRcBuff[g_RF.wpos++] = SBUF0; //Read a byte from UART and save to RF FIFO
 //Move forward RF FIFO write position
 if(g_RF.wpos >= RFRCLEN) //Once the write position reached the end of RF FIFO

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 35 of 44

RF2410U USB RF Programming

 { //Reset it to the start
 g_RF.wpos = 0;
 }
 g_RF.RcLen++; //Increase the RF FIFO Length
 }
 if(TI0) //Is Last byte send finished?
 {
 TI0 = 0; //Clear TI0
 if(g_uart.SnLen) //Is any valid data exist in UART FIFO?
 {
 SBUF0 = g_UARTSnBuff[g_uart.rpos++]; //Featch a byte from UART FIFO and write to UART
 //Move forward the UART FIFO read position
 if(g_uart.rpos >= UARTSNLEN) //Once the read position reached the end of UART FIFO
 { //Reset it to the start
 g_uart.rpos = 0;
 }
 g_uart.SnLen--; //Decrease the UART FIFO Length
 }
 else
 {
 g_uart.SendInProgress = FALSE; //Mark the UART send operation stoped
 }
 }
}

2.3 USB To RF UART Demo software architecture (VB.net 2008)

2.3.1 Software features and main structure description
Software interface planning shows below:

Receive data box

Send data box

Figure 18 USB To RFUART Demo Form

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 36 of 44

RF2410U USB RF Programming

USB To RFUART Demo achieves the following function
 Automatically search and open RF-2410U USBXpress device
 Write Send Data Box’s string to RF-2410U USBXpress device
 Automatically read string from RF-2410U USBXpress device and show receiver list
 Have automatic and timing sending function
 Have sending line feed function
 Count the number of bytes for sending and receiving and then display

USB To RFUART Demo main architecture planning
 After starting the program, open a receive thread use for receiving



RF-2410U device’s data
and display.
Sending data by event trigger mechanism. When users press

 If users select “Auto Send” function, open a timer and set the time of users' specified send
interval period. When timer happens overflow event, perform one send process.

“Send”button, perform send
process once.

2.3.2 USBXpress device access
Silicon Labs provides a Host API calling function integrated to achieve accessing to USBXpress
device, The host API is provided in the form of a Windows Dynamic Link Library (DLL). The host interface
DLL communicates with the USB device via the provided device driver and the operating system's USB stack.
The following is a list of the host API functions available:

 SI_GetNumDevices() - Returns the number of devices connected
 SI_GetProductString() - Returns a descriptor for a device
 SI_Open() - Opens a device and returns a handle
 SI_Close() - Cancels pending IO and closes a device
 SI_Read() - Reads a block of data from a device
 SI_Write() - Writes a block of data to a device
 SI_FlushBuffers() - Flushes the TX and RX buffers for a device
 SI_SetTimeouts() - Sets read and write block timeouts
 SI_GetTimeouts () - Gets read and write block timeouts
 SI_CheckRXQueue() - Returns the number of bytes in a device's RX queue
 SI_DeviceIOControl() - Allows sending low-level commands to the device driver
 SI_GetDLLVersion() - Gets the version of the DLL currently in use
 SI_GetDriverVersion() - Gets the version of the USBXpress driver

2.3.2.1 Open the device

USB To RFUART Demo software achieve open operation for device by calling OpenDevice()
function.

OpenDevice() function firstly call SI_GetNumDevices() function to gain the sum of USBXpress
device. Then get each device’s VID、PID compare with RF-2410U device’s VID、PID until get the
match one. Finally, call SI_Open() function perform open operation on the device. The sample
codes are as follows：

 Private Sub OpenDevice()
 Dim devIndex As Integer = SearchDeviceIndex()
 If devIndex >= 0 Then

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 37 of 44

RF2410U USB RF Programming

 'Open device
 If SI_Open(devIndex, g_DeviceHandle) = SI_SUCCESS Then
 g_DeviceOpened = True
 btOpen.Text = "Close Device"
 lblOpen.ImageIndex = 1

 'Resume the receive thread
 evtRecvStart.Set()
 End If
 End If

End Sub

 Private Function SearchDeviceIndex() As Integer
 Dim dwNumDevice As Integer = 0
 Dim byteVid(4) As Byte
 Dim bytePid(4) As Byte
 Dim callRes As Integer
 Dim strVid As String = ""
 Dim strPid As String = ""

 'Get the total number of usb devices current connected to PC
 callRes = SI_GetNumDevices(dwNumDevice)
 If callRes = SI_SUCCESS Then
 For i As Integer = 0 To dwNumDevice - 1
 'Read out the VID bytes
 SI_GetProductString(i, byteVid(0), SI_RETURN_VID)
 'Read out the PID bytes
 SI_GetProductString(i, bytePid(0), SI_RETURN_PID)

 'Convert the VID bytes to VID string
 strVid = System.Text.Encoding.Default.GetString(byteVid, 0, 4)
 'Convert the PID bytes to PID string
 strPid = System.Text.Encoding.Default.GetString(bytePid, 0, 4)

 'Compare VID\PID strings with us specific VID\PID
 If strVid.ToUpper = DEVICE_VID AndAlso strPid.ToUpper = DEVICE_PID Then
 Return i
 End If
 Next
 End If

 Return -1

End Function

2.3.2.2 Write data to the device
Call SI_Write() function directly write fixed length data to USBXpress device.

2.3.2.3 Read data from the device
Firstly call SI_CheckRXQueue() function to check the current receive buffer’s data length. And then
call

SI_Read() function read fixed length data from USBXpress device.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 38 of 44

RF2410U USB RF Programming

2.3.2.4 Close the device
When completing writing and reading operation, it needs to close all USBXpress device which have
been open before by calling SI_Close function.

2.3.3 “Send”Click Event

Add "Send" button's Click event response btnSend_Click () function, in btnSend_Click
() function implement sending text data to USBXpress
 Private Sub btSend_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btSend.Click

device. The sample codes are as follows:

 Dim strSend As String = tbSend.Text

 'Is a new line characters need to be added?
 If chkSendNewLine.Checked = True Then
 strSend &= vbNewLine
 End If

 'Convert the send string to bytes array
 Dim arraySend() As Byte = System.Text.Encoding.Default.GetBytes(strSend)
 Dim iSendLength As Integer = arraySend.Length
 Dim iBytesWrote As Integer = 0
 Dim iWLen As Integer = 0

 'Loop to send all the byte out
 While (iBytesWrote < iSendLength)
 'Write to device
 iWLen = WriteToDevice(arraySend, iSendLength)
 iBytesWrote += iWLen

 'Update informations for sending
 iAccBytesSent += iWLen
 tsslSend.Text = "S: " & iAccBytesSent.ToString
 End While

End Sub

2.3.4 Data Receive Thread

Due to USBXpress API interface function haven’t reached any data accepted event, so we need to
open a separate receiver thread

ReceiveProc to receive data from USBXpress device.

ReceiveProc thread performs the following tasks:
 Call SI_CheckRXQueue() function to check the current receiver’s length
 If the current length is not 0, call SI_Read() function to read all receive data
 Convert all receive data to text and show in receiver

box

ReceiveProc thread implementation codes shows below:
 Private Sub ReceiveProc()
 Dim iReadLength As Integer
 Dim iBytesToRead As Integer
 Dim iSiStatus As Integer
 While (g_ExitFlag <> True)

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 39 of 44

RF2410U USB RF Programming

 evtRecvStart.WaitOne() 'Wait for Receive start signal
 If g_ExitFlag = True Then Exit While

 If g_DeviceOpened = True Then
 iBytesToRead = 0
 'Check the exist bytes in receive fifo
 SI_CheckRXQueue(g_DeviceHandle, iBytesToRead, iSiStatus)

 If iBytesToRead > 0 Then
 iBytesToRead = IIf(iBytesToRead > RECV_BUFF_LEN, RECV_BUFF_LEN, iBytesToRead)
 iReadLength = 0
 SI_SetTimeouts(500, 500)
 'Read out the data
 If SI_Read(g_DeviceHandle, arrayRecvBuffer(0), iBytesToRead, iReadLength, 0) = SI_SUCCESS
Then
 If iReadLength > 0 Then
 'Display data to tbRecv control
 DisplayRecvText(arrayRecvBuffer, iReadLength)
 End If
 End If
 Else
 Threading.Thread.Sleep(1)
 End If

 End If
 End While

End Sub

3

System Performance Testing

3.1 Test environment preparation
Test spaces require the following condition:

 Make sure there is no big electromagnetic interference around
 The distance between RF-2410U and RF-2410M is 5m and without any block.

Hardware preparation:
 PC: PC A、PC B two sets in total
 RF-2410U one
 RF-2410M ne
 UC-2000 one
 Power Supply ne set

Please refer to “Figure 1 system hardware architecture
Software environment:

diagram” for hardware connection.

 PC A port: Operate USB o RFUART Demo.exe and set according to the following figure

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 40 of 44

RF2410U USB RF Programming

Figure 19 USB To UART Demo Setting

 RF-2410U port： Perform RF-2410U Demo Firmware；
 RF-2410M port: Perform RF-2410M Demo Firmware；
 PC B port: Perform SSCOM32e.exe and select CommNum for UC-2000 communication

port. Communication setting shows below

Figure 20 SSCOM32 Setting

3.2 Test methods and

procedures

To intuitively come to data transmission performance between PC A and PC B, here adopts send
terminal continuously send data more than 100000 bytes. Then

3.2.1 PC A transfer data to PC B
calculates BER by receive end’s bytes.

3.2.1.1 PC A transfer data to PC B test procedure:
 USB To RFUART Demo interface: Click “Open Device”to open RF-2410U communication

port; Click “Clear”button to clear the value of sending and receiving.
 SSCOM32 interface: Click “Clear” button, clear the value of sending and receiving.
 USB To RFUART Demo interface, tick “Send Every”, start dispatching regularly. When

dispatch bytes are

more than 100,000, cancel the tick.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 41 of 44

RF2410U USB RF Programming

Test results:

Figure 21 PC A to B Test Result _ USB To RFUART Demo

Figure 22 PC A to B Test Result _ SSCOM32

As the two screenshots show above, USB To RFUART Dem send the number of bytes is 101046
totally the same with SSCOM32 receive number bytes of 101046 which means the BER is 0%.

3.2.1.2 PC B transfer data to PC A
 USB To RFUART Demo interface: click “Open Device” to open RF-2410U communication

port; click “Clear”button to clear the value of sending and receiving.
 SSCOM32 interface, click “Clear” button, clears the value of sending and receiving.
 SSCOM32 interface, tick “Send Every”, start dispatching regularly. When dispatch bytes

are more than 100,000, cancel the tick.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 42 of 44

RF2410U USB RF Programming

Test results:

Figure 23 PC B to A Test Result _ SSCOM32

Figure 24 PC B to A Test Result _ USB To RFUART Demo

As the two screenshots show above, SSCOM32 send the number of bytes 101244 and USB To
RFUART Demo receive the number of bytes is totally the same. So the BER is 0%.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 43 of 44

RF2410U USB RF Programming

3.3 Software performance summary
As the test above show, this sample system can be quite stably transfer data between PCA and
PCB one way.
Specifications:
◆We cannot ensure all users come to the exactly results due to RF have rigorous requirement for
the surrounding environment.
◆All the tests above are one way data transmission. So we cannot promise any reliability for data
transmission of double-side.

http://www.inhaos.com/�

 AN0002 REV:1.0

www.inhaos.com Copyright® 2011 by INHAOS Page: 44 of 44

RF2410U USB RF Programming

Declare

Due to technical limitations and the reader's understanding, this document is for reference only. Our company makes no

legal commitment or guarantee of the document. If you have any doubt, please feel free to contact our company or authorized

service provider, thank you! (The source code of the example can be download form www.inhaos.com.See the website for more

technical support

Copyright

All the devices mentioned in this document are all cited from the information of the company copyright reserved.

The rights to modify and distribute belong to the company, we do not make any guarantees of the information. When in

application, please confirm the information updated through the appropriate channels, and adjust accordingly.

About Us

INHAOS is a high-tech private limited company combined with electronic products, telecommunications equipment,

computer peripheral equipment development and sales. Aiming to promote domestic IT technological progress, we

develop a series of embedded product development kit. This kit comes from large quantities of commercial product. The

user can use it directly for design and verification, also can quickly convert the design to production and collect new

product design ideas.

Electronic product design

We also can undertake the following services:

Brand components acting
Embedded development kit，Circuit module

Contact us: http://www.inhaos.com/about.php?aID=7

http://www.inhaos.com/�
http://www.inhaos.com/�

	1 0TSystem hardware0T1T 0T1Tarchitecture
	1.1 RF-2410U 0Tmodule Schematic
	1.2 RF-2410M Schematic

	2 0TSystem software architecture
	2.1 RF-2410U Demo Firmware 0Tsoftware architecture
	2.1.1 Software features and main structure description
	2.1.2 USB CDC device implement
	2.1.2.1 USBXpress introduction
	2.1.2.2 USB device initialization
	2.1.2.3 USB device API interrupt

	2.1.3 Data cache planning and management
	2.1.4 USB 0Tdata0T1T 0T1Ttransmission process
	2.1.4.1 USB 0Tdata receive0T1T 0T1Tprocess
	2.1.4.2 USB 0Tdata transmission0T1T 0T1Tprocess

	2.1.5 BK2421 0Tconfiguration0T1T 0T1Tand0T1T 0T1Tinitialization
	2.1.5.1 SPI interface operation
	2.1.5.2 BANK0 Initialize
	2.1.5.3 BANK1 Initialize

	2.1.6 BK2421 PTX and PRX hardware process
	2.1.7 RF data transmission process
	2.1.7.1 RF 0Tpacket0T1T 0T1Tformat0T1T 0T1Tdefined
	2.1.7.2 RF data packet send and receive process
	2.1.7.3 RF data send process
	2.1.7.4 RF data receive process

	2.2 RF-2410M Demo Firmware 0TSoftware Architecture
	2.2.1 Software features and main structure description
	2.2.2 BK2421 configuration and initialization
	2.2.3 RF data transmission process
	2.2.3.1 RF data send process
	2.2.3.2 RF data receive process

	2.2.4 UART data transmission process

	2.3 USB To RF UART Demo software architecture (VB.net 2008)
	2.3.1 Software features and main structure description
	2.3.2 USBXpress device access
	2.3.2.1 Open the device
	2.3.2.2 Write data to the device
	2.3.2.3 Read data from the device
	2.3.2.4 Close the device

	2.3.3 “Send”Click Event
	2.3.4 Data Receive Thread

	3 0TSystem Performance Testing
	3.1 Test environment preparation
	3.2 0TTest0T1T 0T1Tmethods and0T1T 0T1Tprocedures
	3.2.1 PC A transfer data to PC B
	3.2.1.1 PC A transfer data to PC B test procedure:
	3.2.1.2 PC B transfer data to PC A

	3.3 Software performance summary

